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Figure 1: zeno is a framework for behavioral evaluation of machine learning (ML) models. It has two components, a Python 
API and an interactive UI. The API is used to generate information such as model outputs and metrics. Users then interact with 
the UI to see metrics, create slices, and write unit tests. In this toy example, a user is evaluating a cat and dog classifer. They see 
that the model has lower accuracy for dogs with pointy ears, and create a test expecting the slice accuracy to be higher than 70%. 

ABSTRACT 
Machine learning models with high accuracy on test data can still 
produce systematic failures, such as harmful biases and safety is-
sues, when deployed in the real world. To detect and mitigate such 
failures, practitioners run behavioral evaluation of their models, 
checking model outputs for specifc types of inputs. Behavioral 
evaluation is important but challenging, requiring that practition-
ers discover real-world patterns and validate systematic failures. 
We conducted 18 semi-structured interviews with ML practition-
ers to better understand the challenges of behavioral evaluation 
and found that it is a collaborative, use-case-frst process that is 
not adequately supported by existing task- and domain-specifc 
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tools. Using these fndings, we designed zeno, a general-purpose 
framework for visualizing and testing AI systems across diverse 
use cases. In four case studies with participants using zeno on real-
world models, we found that practitioners were able to reproduce 
previous manual analyses and discover new systematic failures. 
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1 INTRODUCTION 
Machine learning (ML) systems deployed in the real world can 
encode problems such as societal biases [3] and safety concerns 
[41]. Practitioners and researchers continue to discover signifcant 
limitations and failures in state-of-the-art models, from system-
atic misclassifcation of certain medical images [44] to racial biases 
in pedestrian detection models [58]. In one classic example, Buo-
lamwini and Gebru [6] compared the performance of facial clas-
sifcation models across diferent demographic groups and found 
that the models performed signifcantly worse for darker-skinned 
women compared to lighter-skinned men. 

Discovering and validating model limitations is often termed 
behavioral evaluation or testing [47]. It requires going beyond mea-
suring aggregate metrics, such as accuracy or F1 score, and under-
standing patterns of model output for subgroups, or slices, of input 
data. Enumerating what behaviors a model should have or what 
types of errors it could produce requires collaboration between 
stakeholders such as ML engineers, designers, and domain experts 
[40, 54]. Behavioral evaluation is also a continuous, iterative pro-
cess, as practitioners update their models to fx limitations or add 
features while ensuring that new failures are not introduced [10]. 

Despite a growing focus on the importance of behavioral evalu-
ation, it remains a challenging task in practice. Models are often 
developed without practitioners having clear model requirements 
or a deep understanding of the products or services in which the 
model will be deployed [40]. Furthermore, many behavioral evalua-
tion tools, such as fairness toolkits, often do not support the types 
of models, data, and behaviors that practitioners work with in the 
real world [17]. Practitioners end up manually testing hand-picked 
examples from users and stakeholders, making it challenging to 
efectively compare models and pick the best version to deploy [26]. 

Given the current state of behavioral evaluation for machine 
learning, this paper asks two guiding research questions: (1) What 
are the specifc real-world challenges for ML evaluation which 
are shared across diferent models, data types, and organizations, 
and (2) Can an evaluation system addressing these challenges help 
practitioners discover, evaluate, and track behaviors across diverse 
ML systems. To this end, we make the following contributions: 

• Formative study on ML evaluation practices. Through semi-
structured interviews with 18 practitioners, we identify common 
challenges for behavioral evaluation of ML systems and opportu-
nities for future tools. 

• zeno, a general-purpose framework for behavioral evalua-
tion of ML systems. We design and implement a framework for 
evaluating machine learning models across data types, tasks, and 
behaviors. zeno (Figure 1) combines a Python API and interactive 
UI for creating data slices, exportable reports, and test suites. 

• Case studies applying zeno on diverse models. We present 
four case studies of practitioners using zeno to evaluate their 
ML systems. Using zeno, practitioners were able to reproduce 
existing analyses without code, generate hypotheses of model 
failures, discover and validate new model behaviors, and come 
up with actionable next steps for fxing model issues. 

2 BACKGROUND AND RELATED WORK 
zeno expands upon work on machine learning evaluation from the 
felds of human-computer interaction and ML. We frst explore the 
current state of machine learning evaluation, including common 
techniques and approaches. We then describe existing tools for 
evaluation, and conclude with methods for improving collaboration 
and shared model understanding in data science and ML. 

2.1 Behavioral Evaluation of Machine Learning 
Evaluating a machine learning model is the challenge of understand-
ing how well a model can accomplish a given task. The canonical 
approach to evaluation is to calculate an aggregate performance 
metric on a held-out sample of data or test set. But just as an IQ 
test is a rough and imperfect measure of human intellect, aggregate 
metrics are a rough approximation of model performance. They 
can, for example, hide systematic failures like societal biases, or fail 
to encode basic capabilities like correct grammar in NLP systems. 

To detect and mitigate these important issues, the ML community 
uses more fne-grained evaluation approaches, often termed behav-
ioral evaluation [10, 47]. Inspired by requirements engineering in 
software engineering, behavioral evaluation focuses on defning 
and testing the capabilities of an ML system, its expected behavior 
on a specifcation of requirements [45, 60]. For example, a practi-
tioner creating a sentiment classifcation model might check that 
the model works for double negatives, is invariant to gender, and is 
accurate for short text. In addition to aggregate metrics, they would 
check how their model performs in these specifc scenarios. 

A central challenge in behavioral evaluation is deciding which 
capabilities a model should have. There can be a practically infnite 
number of requirements in complex domains, which would be 
impossible to list and test. Instead, ML engineers work with domain 
experts and designers to defne the capabilities that a model should 
have as they iterate on and deploy their ML systems [54]. As end-
users interact with the model in products and services, they also 
provide feedback on the limitations or expected behaviors that are 
then used to update the model [8]. 

In this work we further explore evaluation in practice through 
our formative study. We identify common challenges across do-
mains and opportunities for future tools which we apply when 
designing and building the zeno system. 

2.2 Model Evaluation Approaches 
There are numerous ML evaluation systems for discovering, validat-
ing, and tracking model behaviors [10, 47]. The tools use techniques 
such as visualizations and data transformations to discover behav-
iors like fairness concerns and edge cases. zeno complements some 
of these systems and integrates the approaches of others. 

The behavioral evaluation method most related to zeno is sub-
group, or slice-based, analysis, calculating metrics on subsets of a 
dataset. An example tool for slice-based analysis is FairVis [9], a 
visual analytics system that allows users to compare subsets of data 
across metrics to discover intersectional biases. Errudite [59] is a 
similar system for NLP models with which users can create and test 
subgroups using structured queries. Another common method for 
behavioral evaluation is metamorphic testing [13], a concept from 
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software engineering that involves checking the outputs of a black-
box system for inputs that are perturbed in a specifc way. Checklist 
[49] is a metamorphic testing tool for NLP models that perturbs 
text inputs, for example, switching proper nouns and testing if a 
model’s output switches. zeno enables users to do slice-based and 
metamorphic testing for any domain and task. 

A central challenge for behavioral evaluation is discovering which 
behaviors a model has and are important for real-world perfor-
mance. Various methods using algorithmic or crowdsourced tech-
niques have shown promise in surfacing such behaviors. Algo-
rithmic methods are a common approach for detecting groups of 
instances with high error, often termed “blindspots”. SliceFinder 
is one method that uses metadata to fnd slices with signifcantly 
high loss [15]. Often, there is not enough metadata to defne slices 
with high error, so another family of methods uses model embed-
dings and clustering to fnd groups with high error [18, 19]. Lastly, 
there are approaches that use end-user reports or crowd feedback 
to discover model failures or interesting behaviors [2, 8, 43]. zeno 
complements discovery methods by allowing users to formalize, 
validate, and track hypotheses of systemic errors over time. 

Lastly, there are integrated platforms for model evaluation that 
combine multiple types of analyses. For instance, Robustness Gym 
[22] is a framework for NLP models that supports multiple types 
of evaluation, including adversarial attacks and robustness checks. 
The What-If tool [57] is another interactive framework that focuses 
on using counterfactuals to understand model behavior and fx 
fairness concerns. We took a similar approach to these frameworks 
when designing zeno, but focused on the more general task of 
behavioral evaluation for any model or data type. 

2.3 Collaboration and Reporting 
Most ML models are developed by cross-functional teams with 
stakeholders in technical and non-technical roles. While collabo-
ration is essential for deciding how a model should behave and 
identifying potential failures, there is often limited communication 
between stakeholders [40]. This can lead to unrealistic expecta-
tions of model performance or results that do not match designers’ 
expectations. Multiple methods have been proposed to improve 
organizations’ shared understanding of model behavior. 

Interactive systems have shown promise for bridging model 
knowledge between engineering and other roles. One example 
framework, Symphony [7], introduces modular data and model anal-
ysis components that can be used in both computational notebooks 
and standalone dashboards to enable more stakeholders to explore 
model behavior. Marcelle [20] similarly uses modular components 
that allow users to modify an ML pipeline without writing code. 

Complex models also require robust reporting methods to ensure 
that information about data and models is recorded and preserved. 
Datasheets for Datasets [21], FactSheets [1], Nutritional Labels [53], 
and Model Cards [36] codifed the frst principles for documenting 
ML details for future use and reproducibility. Extensions to these re-
porting methods, namely Interactive Model Cards [16], have aimed 
to improve their usability by making them more expressive and 
interactive. zeno is primarily an interactive UI to enable diverse 
stakeholders to perform model analysis and export results that can 
be included in reporting methods like model cards. 

3 FORMATIVE INTERVIEWS WITH MACHINE 
LEARNING PRACTITIONERS 

We conducted semi-structured interviews with machine learning 
practitioners to explore our frst research question: What are the 
common challenges for ML evaluation in practice? In particular, we 
aimed to understand the specifc challenges practitioners face and 
the tools they use when evaluating ML models. The 18 participants, 
listed in Table 1, hold various roles related to machine learning de-
velopment and deployment, from data scientists to CTOs and CEOs 
of small companies. The initial participants were recruited through 
posts on social media networks, e.g., Reddit, LinkedIn, and Discord, 
and through direct contacts at technology companies. Additional 
participants were then recruited through snowball sampling. Each 
interview lasted an hour via video call and participants were com-
pensated with $20. The study was approved by our Institutional 
Review Board (IRB). 

Two researchers analyzed the interviews using inductive iter-
ative thematic analysis and afnity diagramming. From the frst 
few interviews, the researchers extracted common themes around 
model evaluation, debugging, and iteration, grouping similar fnd-
ings in an afnity diagram. After each subsequent interview, the 
researchers iterated on and refned the themes as needed. Recruit-
ing for new participants was stopped when no new themes were 
produced from the last few interviews. 

3.1 Aggregate Metrics Do Not Refect Model 
Performance in Deployment 

All practitioners (18/18) focus on improving aggregate metrics when 
developing new ML models, but, as P9 admitted, you “can perform 
very well on a training dataset, but when you go to ship the product, 
it doesn’t work nearly as well.” To ensure that models perform as ex-
pected when they are deployed, all practitioners also evaluate their 
models on real-world use cases. For example, P16 evaluates their 

Table 1: The practitioners in the semi-structured interviews. 

ID Role Area 

P1 AI Software Engineer AI Consulting 
P2 Data Scientist Clothing Retail 
P3 CTO Speech Training 
P4 CTO Voice Assistant 
P5 Senior ML Engineer Chatbot 
P6 Data Scientist AI Non-proft 
P7 Data Scientist Finance 
P8 MS Student Educational Technology 
P9 ML Engineer Chatbot 
P10 VP of Data Science Business Intelligence 
P11 ML Engineer AI Explainability 
P12 Data Scientist, ML Ridesharing 
P13 Data Engineer Educational Technology 
P14 CTO Health Technology 
P15 CEO Sensing 
P16 Data Scientist Search and Recommendation 
P17 ML Research Scientist Epidemiology 
P18 Data Scientist Video Streaming 
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text analysis model on a per-client basis since they had found that 
their model underperformed for certain types of data, e.g. healthcare 
notes, that it was not trained on. This type of behavioral analysis is 
often also called qualitative analysis, looking at specifc instances 
and model outputs to confrm hypotheses of model behavior. 

There are various methods practitioners described for discov-
ering model limitations and failures, from end-user reports (see 
Section 3.3) to automated clustering algorithms. A common tech-
nique 11 of the 18 participants mentioned was creating their own 
data inputs to probe a model and fnd potential failures, often called 
“dogfooding” in software development. For example, when select-
ing an audio transcription service P3 “has some data collected we 
recorded ourselves, and then we pass it to diferent services and explore 
the structure of the output” to decide which service provides the qual-
itatively “best” output for their task. Two participants are exploring 
automated error discovery methods such as fnding clusters with 
high error or using foundational models [5, 48] to generate new 
instances, but still primarily rely on human-generated feedback. 

After generating hypotheses of systemic failures, many practi-
tioners craft test sets to validate how prevalent behaviors are (10/18). 
The participants had diferent terms for these sets of instances, in-
cluding “golden test sets”, “dynamic benchmarks”, “regression tests”, 
and “benchmark integration tests”. Despite the varied terminology, 
these tests have the same structure: Expectations for model outputs 
on diferent subgroups of instances. For example, P4 has multiple 
sets of text inputs with common human typos paired with valid 
outputs that they check before model releases. 

None of the participants who conduct this type of behavioral 
evaluation use standardized frameworks. This is primarily because 
existing behavioral evaluation tools do not work for their data or 
model types, so they develop their own tools, such as scripts or web 
interfaces, to monitor model performance. All the participants who 
do not perform behavioral analyses (8/18) wish to conduct more 
detailed testing, for example, P1 wants “to do some other testing, 
but we don’t do anything because there’s not a really easy to set up 
system to do that”. Overall, bigger companies are able to dedicate 
more time to detailed evaluation and building customized tools 
that smaller companies cannot aford despite their need for more 
comprehensive evaluation [26]. 

3.2 Challenges in Tracking Continuous Model 
and Data Updates 

All practitioners (18/18) we interviewed update their models as they 
design better architectures, gather more data, and discover real-
world use cases and failures. Participants described this process 
with diferent terms, such as “rapid prototyping” or “agile” methods 
in which they quickly act on user feedback and deploy updated 
models. P4 and P13 even started with “wizard-of-oz” models with 
a human emulating an AI or non-ML models to gather data and 
model requirements before developing more complex models. 

Although updating a model can improve the overall performance 
of an ML system, it can also lead to new failures. This is especially 
true for stochastic models, such as deep learning, which cannot 
be deterministically updated. As P5 lamented, “our test set would 
become so large that if we had to fail for less than 5 [tests] it became 

super hard to make progress”. Model updates are even more compli-
cated for teams that rely on external AI services, as practitioners 
do not control when or how services are updated [11]. For example, 
P3’s team had to switch their voice-to-text service from Google to 
Amazon because Google stopped detecting fller words such as ‘um’ 
after a model update, which was necessary for their product. 

Due to these frequent updates, it becomes important to compare 
models across important behaviors. However, since many model 
evaluations are run inconsistently and across diferent tools, the 
history of past performance is often fragmented or lost, making it 
difcult to fnd regressions or new failures. 

3.3 Limited Collaboration in Cross-Functional 
Teams 

Modern machine learning development in practice is a collaborative 
efort that spans diferent teams and roles. Each member of a team 
needs a robust mental model of how an ML system behaves to 
resolve customer complaints, make management decisions, validate 
failures, and more. 

A common collaboration challenge is making sense of failure 
reports [8] from end-users. 12 of the 18 participants’ teams have 
customer service representatives who parse tickets or complaints 
from end users and pass them to the engineering teams. These 
participants found it challenging to reproduce the reports from 
end users, which were primarily made up of one-of instances and 
broad descriptions. P4’s team tackles this challenge with an “internal 
website where anybody can put potential inputs and expected model 
outputs” which new models are tested on. 

Another collaboration challenge described by 14 participants 
is communicating model performance with managers and other 
stakeholders. For example, P16’s management team often makes 
decisions based solely on a high F1 score, while it is often the case 
that diferent clients require diferent trade-ofs between precision 
and recall. Many decisions on whether or not to deploy an up-
dated model requires shared knowledge and conversations between 
engineers, managers, and customers on whether a new model is 
holistically better than the existing model. 

Since engineers often run analyses in ad-hoc scripts or notebooks, 
knowledge of model behavior can be isolated. Other stakeholders 
do not know how a model tends to behave, and can neither make 
informed decisions on model usage nor provide information about 
model errors to engineers for debugging. 

4 DESIGN GOALS 
From these interviews and the reviewed studies on ML evaluation, 
we distilled a set of design goals that a behavioral evaluation system 
should have. The goals focus on general evaluation challenges 
identifed in the formative study, such as defning behaviors and 
comparing models. With a system for behavioral evaluation, a user 
should be able to: 
D1. Evaluate models with diferent architectures, tasks, and 

data types. Machine learning is a broad feld with diverse 
models and tasks ranging from audio transcription to human 
pose estimation. To reduce the learning curve and encourage 
the reuse of analyses, users should be able to use one framework 
to perform behavioral evaluations on most ML tasks. 
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Figure 2: zeno’s architecture overview. The zeno program and inputs (outlined in purple boxes) can either be hosted locally or 
run on a remote machine. zeno takes a confguration fle with information such as paths to data folders, test fles, and metadata 
and creates a parallelized data processing pipeline to run the decorated Python functions. The resulting UI is available through 
an endpoint that can be accessed locally or hosted on a server. 

D2. Defne and measure diverse model behaviors. Model be-
haviors are varied and complex, from demographic biases to 
grammatical failures. Users should be able to encode most of 
the behaviors across which they wish to evaluate their models. 

D3. Track model performance over time. Practitioners are con-
tinually deploying updated models with new architectures 
trained on improved data. Users should be able to track perfor-
mance across models and fnd potential regressions. 

D4. Evaluate model performance without programming. Mod-
ern machine learning systems are built by large cross-functional 
teams with nontechnical users. Users should be able to perform 
behavioral analyses of models without having to write code. 

5 ZENO: AN INTERACTIVE EVALUATION 
FRAMEWORK 

We used these goals to design and implement zeno, a general-
purpose framework for evaluating ML systems across diverse be-
haviors. zeno is made up of two linked components, a Python API 
and an interactive user interface (UI). The Python API is used to 
write functions providing the core building blocks of behavioral 
evaluation such as model outputs, metrics, metadata, and trans-
formed instances. Outputs from the API are used to scafold the 
interactive UI, which is the primary interface for doing behavioral 
evaluation and testing. The zeno frontend has two primary views: 
an Exploration UI for discovering and creating slices of data and 
an Analysis UI for writing tests, authoring reports, and tracking 
performance over time (D3). 

Originally, we explored implementing zeno as either a plugin 
for computational notebooks or a standalone user interface. We 
decided on a combined programmatic API and interactive UI as 
we found it could make zeno both extensible and accessible. The 
general Python API allows zeno to be applied to diverse models, 
data types, and behaviors (D1, D2), while the interactive UI allows 
nontechnical users to run evaluation (D4). 

zeno is distributed as a Python program. The Python package 
includes the compiled frontend which is written in Svelte and uses 
Vega-Lite [52] for visualizations and Arquero [24] for data manipu-
lation. To run zeno, users specify settings such as test fles, data 
paths, and column names in a TOML confguration fle and launch 
the processing and UI from the command line (Figure 2). Since 
zeno hosts the UI as a URL endpoint, it can either be run locally or 
run remotely on a server with more compute and still be accessed 

by users on local machines. This architecture can scale to large 
deployed settings and was tested with datasets with millions of 
instances (e.g. DifusionDB [56], 2 million images (Section 6.4)). 

5.0.1 Running example. To explain zeno’s concepts, we walk 
through an example use case of a data scientist working at a com-
pany deploying a new model. In the following sections, we use 
block quotes to show how zeno’s features would be used in the 
example. 

Emma is a data scientist at a startup developing a voice assistant. 
Her company is using a simple audio transcription model and 
she has been tasked with understanding how well the model 
works for their data and what updates they need to make. 

5.1 Python API: Extensible Model Analysis 
A core component of zeno is an extensible Python API for run-
ning model inference and data processing. The ML landscape is 
fragmented across many frameworks and libraries, especially for 
diferent data and model types. Despite this fragmentation, most 
ML libraries are based on Python, so we designed the backend API 
for zeno as a set of Python decorator functions that can support 
most current ML models (D1). 

The zeno Python API (Figure 3) consists of four decorator func-
tions: @model, @metric, @distill, and @transform. We found that 
these four functions support the building blocks of behavioral eval-
uation. All four functions take the same input, a Pandas DataFrame 
[35] with metadata and a ZenoOptions object. We chose Pandas as 
the API for the metadata table due to its popularity, which lowers 
the learning curve for writing zeno functions for many data scien-
tists. The ZenoOptions object passes relevant information such as 
column names and static fle paths to the decorated API functions. 
Since zeno calls API functions dynamically for diferent models 
and transformed inputs, ZenoOptions is necessary for a function 
to access the correct columns of the DataFrame. 

The two core functions that a user must implement to use zeno 
are the @model and @metric functions. Functions decorated with 
@model return a new function that returns the outputs for a given 
model. Since this function is model-agnostic, any ML framework 
or AI service can be evaluated using zeno (D1). The @metric deco-
rated functions return a summary number given a subset of data. 
@metric functions can return classic metrics such as accuracy or 
F1 score, but can also be used for specifc tests such as calculating 
the percentage of changed outputs after data transformations (D2). 
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Figure 3: The zeno Python API has four decorator functions: 
@model, @metric, @distill, and @transform. The functions all 
take the same inputs, a DataFrame and a ZenoOptions ob-
ject with information such as data paths and column names. 
@model functions return a function for getting running model 
inference. In the example above, the @model function loads a 
speech-to-text model and returns a function that transcribes 
audio data. @metric functions calculate aggregate metrics 
on subsets of data. Above, the @metric function computes 
the average word error rate (avg_wer) for transcribed audio. 
@distill functions derive new metadata columns. Above, the 
@distill function calculates the amplitude value from audio. 
@transform functions produce new data inputs. Above, the 
@transform function lowers the amplitude of audio samples. 

Emma writes a @model function which calls her transcription 
model and returns the transcribed text. She then uses a Python 
library to implement various @metric functions for common 
transcription metrics such as word error rate (WER). 

The two other zeno decorator functions provide additional func-
tionalities that support behavioral evaluation. Datasets often do not 
have sufcient metadata for users to create the specifc slices across 
which they wish to evaluate their models. For example, a user may 
want to create a slice for images with low exposure, but most image 
datasets do not have the exposure level of an image in the metadata. 
@distill decorated functions return a new DataFrame column for 
a dataset, extracting additional metadata from instances, and allow-
ing users to defne more specifc slices (D2). Users may also want 
to check the output of their model on modifed instances, especially 
for robustness analyses or metamorphic tests. The @transform 
function returns a new set of modifed instances from a subset 
of instances. For the image exposure example above, a user could 
write a transformation function that darkens images to check how 
a model performs for diferent exposures. 

Emma knows her users have a range of microphones across 
which she wants her audio transcription model to work well. To 
test these types of scenarios, she writes a @distill function that 
calculates the amplitude of the sound inputs and a @transform 
function that adds diferent types of noise. 

The zeno backend builds a data processing pipeline to run the 
decorated functions and calculate the outputs for the frontend. For 
example, zeno parses the code of each @distill function to decide 
whether it depends on model outputs and must be run for each 
model. Additionally, zeno runs the processing and inference func-
tions in parallel, which is especially helpful for transform functions, 
since each @distill and @model function needs to be run on each 
transformed instance. Lastly, all zeno function outputs are cached 
so any runs after the initial processing are instant. 

5.2 Exploration UI: Create and Track Slices 
To empower nontechnical stakeholders to perform behavioral anal-
yses, the main interface of zeno is an interactive UI (D4). Although 
the initial @model and @metric functions are required to initially 
set up zeno, the core behavioral evaluation steps can all be done in 
the frontend UI by nontechnical users. 

The primary tasks in behavioral evaluation are creating subsets 
of data and calculating relevant metrics. The Exploration page is 
the initial interface for zeno and allows users to explore, flter, and 
create slices of data. It is divided into two sections, the instance 
view and the metadata panel. 

The instance view (Figure 4, C) is a grid display of data instances, 
ground truth labels, and model outputs. Users can select which 
model output they wish to see, which metric is calculated, and 
which transformation is applied to the data using the drop-down 
menus at the top of the UI. A key feature of the instance view is that 
it is a modular Python package that supports any model and data 
type (D1). Each view is a separate Python package that implements 
a JavaScript function to render a subset of data. While views are 
JavaScript functions, they are packaged as Python libraries so users 
can install the views they need the same way they install the zeno 
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Figure 4: The Exploration UI allows users to see data instances and model outputs and investigate model performance. In 
the fgure, zeno is shown for the audio transcription example described in Section 5. The interface has two components, the 
Metadata Panel (A & B) and the Samples View (C). The Metadata Panel shows the metadata distributions of the dataset (B) and 
the slices and folders a user has created (A). The metadata widgets are cross-fltered, with the purple bars showing the fltered 
table distribution. The Samples View (C) shows the fltered data instances and outputs, currently those with 0.04 < amplitude < 
0.12, along with the selected metric, in this case, accuracy. 

Figure 5: The instance view of the Exploration UI (Figure 4, C) is a modular Python package that can be swapped out for diferent 
models and data types. New views can be implemented with a single JavaScript fle. zeno currently has six implemented views, 
shown here with the following datasets: image classifcation (CIFAR-10 [31]), audio transcription (Free Spoken Digit Dataset 
[27]), image segmentation (Kvasir-SEG [28]), text classifcation (Amazon reviews [42]), timeseries classifcation (MotionSense 
[34]), and object detection (MS-COCO [32]) 
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package. There are currently 6 views implemented (Figure 5), and 
additional views can be created using a cookiecutter template. 

The metadata panel (Figure 4, A & B) provides summary visual-
izations of the metadata columns and previews of user-generated 
data slices. Each metadata column is shown as a row in the metadata 
panel, displayed with a diferent widget depending on what type of 
metadata it is. zeno supports 5 main metadata types: continuous, 
nominal, boolean, datetime, and string. Each metadata widget is 
interactive and can be fltered to reactively update the instance view 
and other metadata widgets. When a metadata column is fltered, 
the flter is shown above the instance view and the selected metric 
is calculated for the current subset. 

When a user fnds an interesting or signifcant subset of data, 
they can save the current flters as a formal slice. Slices can also be 
created in the slicing panel, which allows users to visually defne 
and join flter predicates on metadata columns. These slices are 
displayed at the top of the metadata panel with their size and the 
selected metric, providing a quick look at the performance for each 
slice. Users can also create folders to organize their slices. 

Emma runs zeno to analyze her transcription model in the 
Exploration UI. First, she flters the amplitude metadata widget 
and fnds that the model is signifcantly worse at transcribing 
quiet audio. To track this subset, she creates a slice and puts it 
in the audio properties folder (Figure 4, A). She then selects the 
white noise transformation and sees that the error rate increases 
signifcantly. She notes that they may want to augment their 
training data with noisy instances. 

5.3 Analysis UI: Track and Test Slices Across 
Models 

Once users have created the slices they wish to track using the 
Exploration UI, they are faced with the challenge of comparing 
models and slices. The Analysis UI (Figure 6) provides visualizations, 
reporting tools, and testing features to help users better understand 
and compare the performance of multiple models (D3). 

At the bottom of the Analysis page (Figure 6, F) is a table showing 
the slices created in the Exploration page. To help users navigate 
the slices, folders are shown as tabs above the table and can be used 
to flter which slices are shown. Users can also select which metric 
and transform is applied to each slice, and the resulting metric is 
shown as a column for each model. To make it easier to detect 
trends in slice performance over time, zeno shows a sparkline of 
the selected metric across models for each slice (D3). 

A common phenomenon for models deployed in the real world 
is domain shift, where the real-world data distribution changes 
over time and model performance degrades [37]. To alert users of 
potential regressions in model performance, zeno detects slices 
with performance that decreases between models. For each slice, 
zeno fts a simple linear regression of the selected metric across 
models, and users are alerted of slices with signifcant negative 
slope by a downward arrow next to the sparkline (D3). zeno also 
highlights slices with high variance, indicating potential unexpected 
behavior, with a red up-and-down arrow next to the sparkline. 

Since domain shift and model updates can lead to unexpected 
changes in model performance, users may want to set tests for 
expected slice metrics. We term these behavioral unit tests, functions 

that determine whether a metric for a slice is in an expected range, 
such as �������� > 70%. To create tests, users frst create a new 
report (Figure 6, D), a collection of slices, and add to it the slices 
they wish to test. They can then set an expectation for a certain 
metric on each slice using boolean predicates on the metric value. 
Models for which the test fails are highlighted in red in the report 
table, with the overall number of tests that failed for the most recent 
model shown next to each report in the report panel. Reports can 
be exported as PDFs to be shared externally from Zeno (D4). 

Emma uses the insights from the Exploration UI to train a few 
new models with new and augmented data. In the Analysis UI 
she sees that her new models are performing better for noisy 
input audio, but there is a decreasing trend for instances with 
lower amplitude. To ensure that this trend does not continue, 
she creates a new report and adds slices for diferent levels of 
amplitude. She then creates behavioral unit tests expecting each 
slice to have an accuracy of over 65%. 

6 CASE STUDIES 
We collaborated with four ML practitioners to set up zeno on 
models they developed or audited in their work. The goal of these 
case studies was to answer our second research question, whether 
zeno can help practitioners working on diverse ML tasks efectively 
evaluate their models and discover important behaviors. We chose 
these case studies as they represented a wide range of tasks (binary 
classifcation, multi-class classifcation, image generation) and data 
types (text, images, audio), testing how well zeno generalizes. 

Before each study, we met with the case study participant to 
understand the types of ML systems they use and decide which 
model(s) they wished to evaluate using zeno. We then worked with 
them asynchronously to set up an instance of zeno, with their 
model, which they could access on their computer. Finally, we con-
ducted a one-hour study with an interview and think-aloud session 
(two in-person, two virtual). During the study’s frst 15-30 minutes, 
we asked participants about their existing approaches to model eval-
uation and the challenges they face. For the remainder of the study, 
participants shared their screen and used zeno to evaluate the ML 
model, describing their thought process and fndings while men-
tioning limitations and desired features. Our Institutional Review 
Board (IRB) approved this as a separate study from the formative 
interviews. In each of the following sections, we introduce the prob-
lem, describe the participant’s existing evaluation approach, and 
detail their fndings from using zeno. 

6.1 Case 1: UI Classifcation 
For the frst case study, we worked with a researcher developing 
a model to classify smartphone screenshots using a CNN-based 
deep learning model, which they were evaluating on 10,000 images. 
The model aims to make UIs more accessible to people with visual 
impairments by informing them of the type of interface they are 
looking at. The participant was looking to expand their system 
to screenshots from other devices, e.g., tablets, and wanted to un-
derstand their model’s current performance and generalizability. 
Uniquely for this case study, the participant ran zeno on a cloud 
server that hosted their data and models and they accessed the 
zeno UI remotely on their laptop. 
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Figure 6: The Analysis UI helps users visualize trends of model performance across slices, and allows them to create behavioral 
unit tests of expected slice metrics. In the fgure, zeno is shown for the CIFAR-10 image classifcation task comparing models 
trained for diferent epochs. The Slice Drawer (F) shows the performance of slices across models, including a sparkline with 
the metric trend over time. Users can create new reports in the Report Panel (D) and add slices from the Slice Drawer. Lastly, in 
the Report View (E), users can create behavioral unit tests of expected model performance. 

6.1.1 Existing evaluation approach. The frst participant primarily 
uses computational notebooks for both qualitative and quantitative 
evaluation of their models. For qualitative analyses, they select 
“some test cases that I hypothesized are hard and easy for the model”, 
instances for which they check the model’s output to understand 
how it is behaving. For example, for this model they check a specifc 
screenshot of a login screen with a list structure that they expect 
the model to misclassify as a list view. For every new domain in 
which they train a model, the participant spends signifcant time 
creating dedicated Python notebooks to display data instances and 
model outputs for this type of qualitative analysis. 

The participant also uses quantitative metrics for evaluation, 
especially for more complex domains such as object detection where 
they use a combination of metrics such as mean Average Precision 
(mAP) at diferent scales. As with the qualitative analyses, the 
participant authors specifc Python notebooks to calculate these 
metrics. They also make an efort to write evaluation code that is 
distinct from the training code to ensure that they avoid any bugs 
such as data leakage in the training process. 

6.1.2 Findings with zeno. The participant found zeno’s interac-
tive instance view and metadata distributions extremely useful 
for discovering new failures, systematically validating qualitative 

analyses, and sharing results with others. Just from the initial Ex-
ploration UI, the participant found the ability to quickly browse 
dozens of instances much more valuable than the static notebooks 
they used previously. Within a few seconds, they found new model 
failures they noted to validate later and add as new qualitative test 
examples. The participant wished to flter the instance view to only 
see failures or have the system suggest slices to make it easier to 
quickly fnd model errors. 

With the metadata distributions in the Exploration UI the par-
ticipant was also able to validate some of their existing qualitative 
hypotheses more systematically. For example, they confrmed their 
hypothesis that the model would perform worse for underrepre-
sented classes in the dataset by fltering for the most underrepre-
sented classes using the class histogram (see Figure 7). They found 
the ability to save such slices of data to share with others to be 
a powerful feature and wished to “take a very well known dataset 
such as ImageNet, fnd slices that are questionable and share them” 
to help others test their own model for such issues. 

Lastly, the participant found that the code for the zeno API was 
similar to what they used in notebooks and that they “could totally 
get used to the zeno API”. While they were able to copy and paste 
their existing code into zeno, they wished for a more streamlined 
setup process, for example, with automatically generated zeno 
confguration fles for common data types and ML libraries. 
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Figure 7: A screenshot of the Exploration UI from the UI classifcation case study (Section 6.1). The participant selected 
underrepresented ground-truth classes and confrmed that the model performance is signifcantly worse for them. 

6.2 Case 2: Breast Cancer Detection 
In the second case study, we worked with a researcher who was 
auditing a breast cancer classifcation model on a dataset of 6,635 
images. The model, also a CNN-based deep learning model, divides 
mammogram images into small patches and detects whether there 
is a lesion present in each patch. The model was trained on a dataset 
provided by a collaboration with clinical researchers at an academic 
hospital system in the United States. Although the model had a 
reasonably high accuracy of 80%, the developers had difculty un-
derstanding the failure modes of the model, especially since the 
dataset was de-identifed and had minimal metadata. The partici-
pant in our case study wanted to discover meaningful dimensions 
across which the model failed in order to guide model updates. 

6.2.1 Existing evaluation approach. Unlike the frst case study par-
ticipant, the participant in the second study had only used quantita-
tive aggregate metrics when evaluating models. They “had not used 
any platform or framework to understand how a model performed on 
specifc features of the metadata”, and fully relied on aggregate met-
rics as a measure for model quality. This involved creating Python 
scripts to load a model and data and calculate metrics such as AUC 
and F1 score. Attempting to improve the breast cancer classifcation 
model led to their frst foray into behavioral evaluation. 

6.2.2 Findings with zeno. The participant found that the combina-
tion of the extensible @distill functions and metadata distribu-
tions was essential for fnding slices with signifcant areas of error. 

Since the participant was not a domain expert, they consulted with 
medical imaging researchers that recommended a Python library, 
pyradiomics [55], to extract physiologically relevant characteris-
tics from medical images. The participant implemented dozens of 
@distill functions using pyradiomics functions that encoded im-
portant regional information, such as grey-level values, that was 
not captured by their original features. They also wrote a couple 
more @distill functions to encode the position of each image 
patch, a hypothesis they had from looking at model failures in the 
instance view. The participant only had to add a couple of lines of 
Python to use all of these functions in zeno. 

Since the dataset had minimal existing metadata, interactively 
fltering the @distilled distributions was the primary way the 
participant found patterns of failure. By interactively cross-fltering 
the @distilled metadata histograms, they found that the model 
performed signifcantly worse for images with higher tissue density, 
a phenomenon that also occurs with human radiologists [30]. They 
also found that the model was trained on many background patches 
of image that did not include part of the breast, which also impacted 
the aggregate metrics. The participant noted that they may want to 
clean the data and upsample instances relevant to the classifcation 
task. Due to the quantity and complexity of these analyses, the 
participant wished for more expressive slice comparisons, such as 
comparing multiple slices at a time in the Exploration UI. Otherwise, 
using zeno the participant found signifcant failures which they 
had not been able to fnd using Python scripts. 
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6.3 Case 3: Voice Commands 
The third case study was with a participant who was developing 
a decision-tree model to detect the direction in which a person is 
speaking using an array of microphones, which they were eval-
uating on 11,520 recordings. The goal of the model is to predict 
to which microphone, often a smart speaker, a person is talking 
in order to respond from the right speaker. The participant had 
collected data from diverse setups to understand the performance 
of their model in the diferent scenarios. 

6.3.1 Existing evaluation approach. Most of the models the partic-
ipant works on are sensor-based systems highly impacted by the 
physical nature of the data signals, for example, echoes and noise 
in sound data. Thus, in addition to calculating classic aggregate 
metrics, the participant generates and tests inputs with diverse 
physical properties. For example, in the model described above, the 
participant collected audio from speakers next to a wall and in the 
middle of the room to since they thought the rebounding sound 
from the wall might confuse the model. 

To evaluate such scenarios, the participant collects data in dozens 
of confgurations, and so often has extensive metadata for behav-
ioral analysis. Like the other participants, they use computational 
notebooks to manually split the data across diferent metadata fea-
tures and print out multiple metrics. Due to their high quantity of 
metadata, the participant only looks at simple slices of data, and 
does not often explore intersectional slices of multiple features. 

6.3.2 Findings with zeno. Using zeno, the participant was both 
able to validate all of their hypotheses signifcantly faster and dis-
covered potential causes for systematic model failures. For example, 
they confrmed a fnding from previous analyses where a “model 
worked very well at 1, 2, and 3 meters, but there was a sharp dropof 
at 5 meters” by simply looking at the metadata distributions. They 
also used the spectrogram visualization of instances in each slice to 
look for potential reasons for the steep dropof in performance, for 
example, signals with lower amplitude. Additionally, they found 
the cross-fltering between metadata histograms to be useful to fnd 
potential interactions between physical features, such as audio both 
at a distance and a speaker against a wall. Cross-fltering combined 
with expressive instance visualizations of the audio data was es-
sential for both confrming their hypothesis and ideating potential 
causes for model failures. 

Much of the participant’s work is focused on collecting new 
data, so they suggested data-related improvements for zeno. Since 
the participant often tests their model with their own inputs, they 
wished for a direct way to add new instances to zeno. They also 
mentioned having more interactive transformations, for example, 
having a slider to gradually apply a transformation such as reducing 
the amplitude of an audio fle. 

6.4 Case 4: Text-to-Image Generation 
For our last case study, we worked with a non-technical researcher 
who explores biases in deployed ML systems, in this case, the text-to-
image generation model Stable Difusion [50]. To audit this model 
they used zeno with the DifusionDB Dataset [56], which consists 

of 2 million prompt-image pairs generated using the Stable Difu-
sion model. The participant wanted to explore potential systematic 
biases in the images generated by Stable Difusion. 

6.4.1 Existing evaluation approach. The participant’s work is pri-
marily focused on auditing public-facing algorithmic systems such 
as search engine results and social media ads. They exclusively con-
duct manual, ad-hoc audits, testing a range of specifc inputs such 
as search queries and individually checking the model’s outputs. 
The inputs they test are often guided by existing knowledge of 
model biases, for example, the participant has “used some lingustic 
discrimination knowledge [...] such as knowing that certain words 
tend to be gendered” to test inputs with likely biased results. 

The participant also works with end users of algorithmic systems 
to understand how they audit models and what biases they are able 
to fnd. They found that “people often found issues in searches that 
none of the researchers, including me, had even thought of”. Having 
diverse users test models is essential for fnding issues, and the 
participant works with end-users to surface new limitations. 

6.4.2 Findings with zeno. When auditing the DifusionDB dataset 
with zeno, the participant took a similar approach to their previous 
audits but was able to come up with more systematic and validated 
conclusions of model biases. Their primary interaction with zeno 
was using the string search metadata cell to look for certain prompt 
inputs. Similar to how they approached debugging search engines, 
they used prior knowledge of likely biased prompts but were able 
to see dozens of examples instead of one prompt at a time. For 
example, when searching for prompts with the “scientist” in them, 
every generated image was male, encoding a typical gender bias. 
By seeing dozens of prompts the participant was able to gather 
more evidence that the model produced this pattern systematically 
and was not due to a one-of prompt. 

The DifusionDB dataset also includes a measure of toxicity, or 
“NSFW” level, for both the input prompts and generated images. 
These numbers were represented as histogram distributions in 
zeno, and the participant found it invaluable to flter by and fnd 
potential biases. One interesting experiment the participant tried 
was to see if the average distribution of the NSFW tag would go 
up for certain terms. For example, they saw small increases in the 
distribution when searching for certain gendered terms, including 
the word “girl”, which refected that the images generated of women 
were more sexualized than those of men. They could only see this 
dataset-level pattern using the combination of zeno’s metadata 
distribution and instance view. 

Lastly, the participant refected on how usable zeno would be 
for everyday users of algorithmic systems. They mentioned that 
technical terms such as “metadata” may be too niche for everyday 
users and could be renamed. Otherwise, they found the system 
intuitive and usable if set up for use by diverse end users. 

7 DISCUSSION 
Our case studies showed that zeno’s complementary API and UI 
empowered practitioners to fnd signifcant model issues across 
datasets and tasks. More generally, we found that a framework 
for behavioral evaluation can be efective across diverse data and 
model types (D1). This generalizability can be seen by comparing 
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two of the case studies, the malignant tumor detection (Section 6.2) 
and audio classifcation (Section 6.3) cases. The two cases difered 
signifcantly in their data type (image vs. audio), task (binary vs. 
multi-class classifcation), model (CNN vs. decision tree), and end 
goal (model development vs. auditing). Despite these diferences, 
both participants could efectively discover and encode model be-
haviors they wished to test and found limitations ranging from 
robustness to domain shift (D2). 

zeno’s diferent afordances made the behavioral evaluation pro-
cess easier, quicker, and more efective, depending on the user’s 
goals and the challenges of each particular task. For example, in 
Case 2, the participant found the extensible API essential for cre-
ating metadata to analyze their model across (D2), while in case 
3, the participant found the interactive visualizations more useful 
given the extensive metadata already present in their dataset. zeno 
also supports users’ particular strengths and skillsets - without 
using the API, our non-technical case study participant (Case 4) 
was still able to fnd signifcant model biases by using their domain 
knowledge to interact with the UI (D4). 

Participants in the case studies found that zeno was easily inte-
grated into their workfows, requiring minimal efort to adapt their 
code to work with the zeno API (D1). For example, the participant 
in case study 1 only modifed a few lines of their inference code to 
work with zeno, and the participant in the second case study was 
able to use a radiomics library in zeno with minimal setup. The 
participants also suggested ways in which zeno could be made even 
easier to use, such as automatically generating zeno API functions 
and confguration fles for common ML libraries. 

While we validated that most of the design goals were met by 
zeno, our case studies did not thoroughly explore how zeno could 
be used over longer periods (D3). All four participants worked 
with early-stage models and only used zeno for a limited time. 
Longer-term, in-situ studies would provide more nuanced feedback 
for the utility of zeno’s model comparison features. A beneft of 
zeno’s ease of use, both with the API and UI, is that users can 
immediately start using zeno’s model tracking and comparison 
features as models move from research to deployment. 

8 LIMITATIONS AND FUTURE WORK 
zeno provides a general and extensible framework for the behav-
ioral evaluation of ML, but leaves signifcant room to better address 
the challenges in the evaluation process. 

Slice discovery. A central challenge for behavioral evaluation is 
knowing which behaviors are important to end users and encoded 
by a model. To directly encourage the reuse of model functions to 
scafold discovery, we are currently designing ZenoHub, a collab-
orative repository where people can share their zeno functions 
and fnd relevant analysis components more easily. Including slice 
discovery methods directly in zeno could also help users fnd impor-
tant behaviors. zeno provides the common medium of representing 
metadata and slices that practitioners can use to interact with and 
use the results of these discovery methods. 

Improved visualizations. Defning and testing metrics on data slices 
is the core of zeno, but it only provides a few simple visualiza-
tions of data and slices in a grid and table view. There are many 

more powerful visualization types that could improve the usabil-
ity of zeno. Instance views that encode semantic similarity, such 
as DendroMap [4], Facets [46], or AnchorViz [12], could improve 
users’ ability to fnd patterns and new behaviors in their data. zeno 
can also adapt existing visualizations of ML performance, such as 
ML Cube [29], Neo [23], or ConfusionFlow [25], to better visualize 
model behaviors. For example, grid views showing the intersections 
of slices could highlight important subsets of data. 

Scaling. zeno has a few optimizations for scaling to large datasets, 
including parallel computation and caching, but machine learning 
datasets are continuously growing and additional optimizations 
could speed up processing considerably. A potential update would 
be to support processing in distributed computing clusters using a 
library such as Ray [39]. Another bottleneck is the cross-fltering of 
dozens of histograms on tables with millions of rows. zeno could 
implement an optimization strategy like Falcon [38] to support live 
cross-fltering on large datasets. 

Model improvement. zeno is focused exclusively on evaluation and 
does not include methods to update models and fx discovered 
failures. Future work can explore how to directly use the insights 
from zeno to improve model performance. For example, there are 
promising results in using data slices to improve model perfor-
mance, such as slice-based learning [14] and group distributionally 
robust optimization (GDRO) [33, 51]. 

Further evaluation. The case studies evaluated zeno on real-world 
ML systems, but further evaluations could better elucidate the afor-
dances and limitations of zeno. Future evaluations could explore 
how usable zeno is for additional non-technical users and how well 
it works for continually updated deployed systems. 

9 CONCLUSION 
Behavioral evaluation of machine learning is essential to detect 
and fx model behaviors such as biases and safety issues. In this 
work, we explored the challenges of ML evaluation and designed a 
general-purpose tool for evaluating models across behaviors. 

To identify specifc challenges for ML evaluation, we conducted 
formative interviews with 18 ML practitioners. From the interview 
results we derived four main design goals for an evaluation system, 
including supporting comparison over time and no-code analysis. 
We used these goals to design and implement zeno, a general-
purpose framework for defning and tracking diverse model be-
haviors across diferent ML tasks, models, and data types. zeno 
combines a Python decorator API for defning core building blocks 
with an interactive UI for creating slices and reports. 

We showed how zeno can be applied to diverse domains through 
four case studies with practitioners evaluating real-world models. 
Participants in the case studies confrmed existing fndings, hypoth-
esized new failures, and validated and discovered behaviors using 
zeno. As a general framework for behavioral evaluation, zeno can 
incorporate future features, such as error discovery methods and 
visualizations, to support the growing complexity of models and 
encourage the deployment of responsible ML systems. 
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