
Zeno: An Interactive Framework for Behavioral Evaluation of

Ángel Alexander Cabrera Erica Fu Donald Bertucci
Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University

Pittsburgh, Pennsylvania, USA Pittsburgh, Pennsylvania, USA Pittsburgh, Pennsylvania, USA

Kenneth Holstein Ameet Talwalkar Jason I. Hong
Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University

Pittsburgh, Pennsylvania, USA Pittsburgh, Pennsylvania, USA Pittsburgh, Pennsylvania, USA

Adam Perer
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

Machine Learning

Figure 1: zeno is a framework for behavioral evaluation of machine learning (ML) models. It has two components, a Python
API and an interactive UI. The API is used to generate information such as model outputs and metrics. Users then interact with
the UI to see metrics, create slices, and write unit tests. In this toy example, a user is evaluating a cat and dog classifer. They see
that the model has lower accuracy for dogs with pointy ears, and create a test expecting the slice accuracy to be higher than 70%.

ABSTRACT
Machine learning models with high accuracy on test data can still
produce systematic failures, such as harmful biases and safety is-
sues, when deployed in the real world. To detect and mitigate such
failures, practitioners run behavioral evaluation of their models,
checking model outputs for specifc types of inputs. Behavioral
evaluation is important but challenging, requiring that practition-
ers discover real-world patterns and validate systematic failures.
We conducted 18 semi-structured interviews with ML practition-
ers to better understand the challenges of behavioral evaluation
and found that it is a collaborative, use-case-frst process that is
not adequately supported by existing task- and domain-specifc

This work is licensed under a Creative Commons Attribution International
4.0 License.

CHI ’23, April 23–28, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9421-5/23/04.
https://doi.org/10.1145/3544548.3581268

tools. Using these fndings, we designed zeno, a general-purpose
framework for visualizing and testing AI systems across diverse
use cases. In four case studies with participants using zeno on real-
world models, we found that practitioners were able to reproduce
previous manual analyses and discover new systematic failures.

CCS CONCEPTS
• Human-centered computing → Interactive systems and
tools; • Computing methodologies → Machine learning; Ar-
tifcial intelligence.

KEYWORDS
machine learning, visualization, evaluation, testing

ACM Reference Format:
Ángel Alexander Cabrera, Erica Fu, Donald Bertucci, Kenneth Holstein,
Ameet Talwalkar, Jason I. Hong, and Adam Perer. 2023. Zeno: An Interactive
Framework for Behavioral Evaluation of Machine Learning. In Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems (CHI ’23),
April 23–28, 2023, Hamburg, Germany. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3544548.3581268

https://orcid.org/0000-0003-0348-3362
https://orcid.org/0000-0002-9284-5750
https://orcid.org/0000-0002-2726-4108
https://orcid.org/0000-0001-6730-922X
https://orcid.org/0000-0001-6650-1893
https://orcid.org/0000-0002-9856-9654
https://orcid.org/0000-0002-8369-3847
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3544548.3581268
https://doi.org/10.1145/3544548.3581268

CHI ’23, April 23–28, 2023, Hamburg, Germany Cabrera et al.

1 INTRODUCTION
Machine learning (ML) systems deployed in the real world can
encode problems such as societal biases [3] and safety concerns
[41]. Practitioners and researchers continue to discover signifcant
limitations and failures in state-of-the-art models, from system-
atic misclassifcation of certain medical images [44] to racial biases
in pedestrian detection models [58]. In one classic example, Buo-
lamwini and Gebru [6] compared the performance of facial clas-
sifcation models across diferent demographic groups and found
that the models performed signifcantly worse for darker-skinned
women compared to lighter-skinned men.

Discovering and validating model limitations is often termed
behavioral evaluation or testing [47]. It requires going beyond mea-
suring aggregate metrics, such as accuracy or F1 score, and under-
standing patterns of model output for subgroups, or slices, of input
data. Enumerating what behaviors a model should have or what
types of errors it could produce requires collaboration between
stakeholders such as ML engineers, designers, and domain experts
[40, 54]. Behavioral evaluation is also a continuous, iterative pro-
cess, as practitioners update their models to fx limitations or add
features while ensuring that new failures are not introduced [10].

Despite a growing focus on the importance of behavioral evalu-
ation, it remains a challenging task in practice. Models are often
developed without practitioners having clear model requirements
or a deep understanding of the products or services in which the
model will be deployed [40]. Furthermore, many behavioral evalua-
tion tools, such as fairness toolkits, often do not support the types
of models, data, and behaviors that practitioners work with in the
real world [17]. Practitioners end up manually testing hand-picked
examples from users and stakeholders, making it challenging to
efectively compare models and pick the best version to deploy [26].

Given the current state of behavioral evaluation for machine
learning, this paper asks two guiding research questions: (1) What
are the specifc real-world challenges for ML evaluation which
are shared across diferent models, data types, and organizations,
and (2) Can an evaluation system addressing these challenges help
practitioners discover, evaluate, and track behaviors across diverse
ML systems. To this end, we make the following contributions:

• Formative study on ML evaluation practices. Through semi-
structured interviews with 18 practitioners, we identify common
challenges for behavioral evaluation of ML systems and opportu-
nities for future tools.

• zeno, a general-purpose framework for behavioral evalua-
tion of ML systems. We design and implement a framework for
evaluating machine learning models across data types, tasks, and
behaviors. zeno (Figure 1) combines a Python API and interactive
UI for creating data slices, exportable reports, and test suites.

• Case studies applying zeno on diverse models. We present
four case studies of practitioners using zeno to evaluate their
ML systems. Using zeno, practitioners were able to reproduce
existing analyses without code, generate hypotheses of model
failures, discover and validate new model behaviors, and come
up with actionable next steps for fxing model issues.

2 BACKGROUND AND RELATED WORK
zeno expands upon work on machine learning evaluation from the
felds of human-computer interaction and ML. We frst explore the
current state of machine learning evaluation, including common
techniques and approaches. We then describe existing tools for
evaluation, and conclude with methods for improving collaboration
and shared model understanding in data science and ML.

2.1 Behavioral Evaluation of Machine Learning
Evaluating a machine learning model is the challenge of understand-
ing how well a model can accomplish a given task. The canonical
approach to evaluation is to calculate an aggregate performance
metric on a held-out sample of data or test set. But just as an IQ
test is a rough and imperfect measure of human intellect, aggregate
metrics are a rough approximation of model performance. They
can, for example, hide systematic failures like societal biases, or fail
to encode basic capabilities like correct grammar in NLP systems.

To detect and mitigate these important issues, the ML community
uses more fne-grained evaluation approaches, often termed behav-
ioral evaluation [10, 47]. Inspired by requirements engineering in
software engineering, behavioral evaluation focuses on defning
and testing the capabilities of an ML system, its expected behavior
on a specifcation of requirements [45, 60]. For example, a practi-
tioner creating a sentiment classifcation model might check that
the model works for double negatives, is invariant to gender, and is
accurate for short text. In addition to aggregate metrics, they would
check how their model performs in these specifc scenarios.

A central challenge in behavioral evaluation is deciding which
capabilities a model should have. There can be a practically infnite
number of requirements in complex domains, which would be
impossible to list and test. Instead, ML engineers work with domain
experts and designers to defne the capabilities that a model should
have as they iterate on and deploy their ML systems [54]. As end-
users interact with the model in products and services, they also
provide feedback on the limitations or expected behaviors that are
then used to update the model [8].

In this work we further explore evaluation in practice through
our formative study. We identify common challenges across do-
mains and opportunities for future tools which we apply when
designing and building the zeno system.

2.2 Model Evaluation Approaches
There are numerous ML evaluation systems for discovering, validat-
ing, and tracking model behaviors [10, 47]. The tools use techniques
such as visualizations and data transformations to discover behav-
iors like fairness concerns and edge cases. zeno complements some
of these systems and integrates the approaches of others.

The behavioral evaluation method most related to zeno is sub-
group, or slice-based, analysis, calculating metrics on subsets of a
dataset. An example tool for slice-based analysis is FairVis [9], a
visual analytics system that allows users to compare subsets of data
across metrics to discover intersectional biases. Errudite [59] is a
similar system for NLP models with which users can create and test
subgroups using structured queries. Another common method for
behavioral evaluation is metamorphic testing [13], a concept from

Zeno: An Interactive Framework for Behavioral Evaluation of Machine Learning CHI ’23, April 23–28, 2023, Hamburg, Germany

software engineering that involves checking the outputs of a black-
box system for inputs that are perturbed in a specifc way. Checklist
[49] is a metamorphic testing tool for NLP models that perturbs
text inputs, for example, switching proper nouns and testing if a
model’s output switches. zeno enables users to do slice-based and
metamorphic testing for any domain and task.

A central challenge for behavioral evaluation is discovering which
behaviors a model has and are important for real-world perfor-
mance. Various methods using algorithmic or crowdsourced tech-
niques have shown promise in surfacing such behaviors. Algo-
rithmic methods are a common approach for detecting groups of
instances with high error, often termed “blindspots”. SliceFinder
is one method that uses metadata to fnd slices with signifcantly
high loss [15]. Often, there is not enough metadata to defne slices
with high error, so another family of methods uses model embed-
dings and clustering to fnd groups with high error [18, 19]. Lastly,
there are approaches that use end-user reports or crowd feedback
to discover model failures or interesting behaviors [2, 8, 43]. zeno
complements discovery methods by allowing users to formalize,
validate, and track hypotheses of systemic errors over time.

Lastly, there are integrated platforms for model evaluation that
combine multiple types of analyses. For instance, Robustness Gym
[22] is a framework for NLP models that supports multiple types
of evaluation, including adversarial attacks and robustness checks.
The What-If tool [57] is another interactive framework that focuses
on using counterfactuals to understand model behavior and fx
fairness concerns. We took a similar approach to these frameworks
when designing zeno, but focused on the more general task of
behavioral evaluation for any model or data type.

2.3 Collaboration and Reporting
Most ML models are developed by cross-functional teams with
stakeholders in technical and non-technical roles. While collabo-
ration is essential for deciding how a model should behave and
identifying potential failures, there is often limited communication
between stakeholders [40]. This can lead to unrealistic expecta-
tions of model performance or results that do not match designers’
expectations. Multiple methods have been proposed to improve
organizations’ shared understanding of model behavior.

Interactive systems have shown promise for bridging model
knowledge between engineering and other roles. One example
framework, Symphony [7], introduces modular data and model anal-
ysis components that can be used in both computational notebooks
and standalone dashboards to enable more stakeholders to explore
model behavior. Marcelle [20] similarly uses modular components
that allow users to modify an ML pipeline without writing code.

Complex models also require robust reporting methods to ensure
that information about data and models is recorded and preserved.
Datasheets for Datasets [21], FactSheets [1], Nutritional Labels [53],
and Model Cards [36] codifed the frst principles for documenting
ML details for future use and reproducibility. Extensions to these re-
porting methods, namely Interactive Model Cards [16], have aimed
to improve their usability by making them more expressive and
interactive. zeno is primarily an interactive UI to enable diverse
stakeholders to perform model analysis and export results that can
be included in reporting methods like model cards.

3 FORMATIVE INTERVIEWS WITH MACHINE
LEARNING PRACTITIONERS

We conducted semi-structured interviews with machine learning
practitioners to explore our frst research question: What are the
common challenges for ML evaluation in practice? In particular, we
aimed to understand the specifc challenges practitioners face and
the tools they use when evaluating ML models. The 18 participants,
listed in Table 1, hold various roles related to machine learning de-
velopment and deployment, from data scientists to CTOs and CEOs
of small companies. The initial participants were recruited through
posts on social media networks, e.g., Reddit, LinkedIn, and Discord,
and through direct contacts at technology companies. Additional
participants were then recruited through snowball sampling. Each
interview lasted an hour via video call and participants were com-
pensated with $20. The study was approved by our Institutional
Review Board (IRB).

Two researchers analyzed the interviews using inductive iter-
ative thematic analysis and afnity diagramming. From the frst
few interviews, the researchers extracted common themes around
model evaluation, debugging, and iteration, grouping similar fnd-
ings in an afnity diagram. After each subsequent interview, the
researchers iterated on and refned the themes as needed. Recruit-
ing for new participants was stopped when no new themes were
produced from the last few interviews.

3.1 Aggregate Metrics Do Not Refect Model
Performance in Deployment

All practitioners (18/18) focus on improving aggregate metrics when
developing new ML models, but, as P9 admitted, you “can perform
very well on a training dataset, but when you go to ship the product,
it doesn’t work nearly as well.” To ensure that models perform as ex-
pected when they are deployed, all practitioners also evaluate their
models on real-world use cases. For example, P16 evaluates their

Table 1: The practitioners in the semi-structured interviews.

ID Role Area

P1 AI Software Engineer AI Consulting
P2 Data Scientist Clothing Retail
P3 CTO Speech Training
P4 CTO Voice Assistant
P5 Senior ML Engineer Chatbot
P6 Data Scientist AI Non-proft
P7 Data Scientist Finance
P8 MS Student Educational Technology
P9 ML Engineer Chatbot
P10 VP of Data Science Business Intelligence
P11 ML Engineer AI Explainability
P12 Data Scientist, ML Ridesharing
P13 Data Engineer Educational Technology
P14 CTO Health Technology
P15 CEO Sensing
P16 Data Scientist Search and Recommendation
P17 ML Research Scientist Epidemiology
P18 Data Scientist Video Streaming

CHI ’23, April 23–28, 2023, Hamburg, Germany Cabrera et al.

text analysis model on a per-client basis since they had found that
their model underperformed for certain types of data, e.g. healthcare
notes, that it was not trained on. This type of behavioral analysis is
often also called qualitative analysis, looking at specifc instances
and model outputs to confrm hypotheses of model behavior.

There are various methods practitioners described for discov-
ering model limitations and failures, from end-user reports (see
Section 3.3) to automated clustering algorithms. A common tech-
nique 11 of the 18 participants mentioned was creating their own
data inputs to probe a model and fnd potential failures, often called
“dogfooding” in software development. For example, when select-
ing an audio transcription service P3 “has some data collected we
recorded ourselves, and then we pass it to diferent services and explore
the structure of the output” to decide which service provides the qual-
itatively “best” output for their task. Two participants are exploring
automated error discovery methods such as fnding clusters with
high error or using foundational models [5, 48] to generate new
instances, but still primarily rely on human-generated feedback.

After generating hypotheses of systemic failures, many practi-
tioners craft test sets to validate how prevalent behaviors are (10/18).
The participants had diferent terms for these sets of instances, in-
cluding “golden test sets”, “dynamic benchmarks”, “regression tests”,
and “benchmark integration tests”. Despite the varied terminology,
these tests have the same structure: Expectations for model outputs
on diferent subgroups of instances. For example, P4 has multiple
sets of text inputs with common human typos paired with valid
outputs that they check before model releases.

None of the participants who conduct this type of behavioral
evaluation use standardized frameworks. This is primarily because
existing behavioral evaluation tools do not work for their data or
model types, so they develop their own tools, such as scripts or web
interfaces, to monitor model performance. All the participants who
do not perform behavioral analyses (8/18) wish to conduct more
detailed testing, for example, P1 wants “to do some other testing,
but we don’t do anything because there’s not a really easy to set up
system to do that”. Overall, bigger companies are able to dedicate
more time to detailed evaluation and building customized tools
that smaller companies cannot aford despite their need for more
comprehensive evaluation [26].

3.2 Challenges in Tracking Continuous Model
and Data Updates

All practitioners (18/18) we interviewed update their models as they
design better architectures, gather more data, and discover real-
world use cases and failures. Participants described this process
with diferent terms, such as “rapid prototyping” or “agile” methods
in which they quickly act on user feedback and deploy updated
models. P4 and P13 even started with “wizard-of-oz” models with
a human emulating an AI or non-ML models to gather data and
model requirements before developing more complex models.

Although updating a model can improve the overall performance
of an ML system, it can also lead to new failures. This is especially
true for stochastic models, such as deep learning, which cannot
be deterministically updated. As P5 lamented, “our test set would
become so large that if we had to fail for less than 5 [tests] it became

super hard to make progress”. Model updates are even more compli-
cated for teams that rely on external AI services, as practitioners
do not control when or how services are updated [11]. For example,
P3’s team had to switch their voice-to-text service from Google to
Amazon because Google stopped detecting fller words such as ‘um’
after a model update, which was necessary for their product.

Due to these frequent updates, it becomes important to compare
models across important behaviors. However, since many model
evaluations are run inconsistently and across diferent tools, the
history of past performance is often fragmented or lost, making it
difcult to fnd regressions or new failures.

3.3 Limited Collaboration in Cross-Functional
Teams

Modern machine learning development in practice is a collaborative
efort that spans diferent teams and roles. Each member of a team
needs a robust mental model of how an ML system behaves to
resolve customer complaints, make management decisions, validate
failures, and more.

A common collaboration challenge is making sense of failure
reports [8] from end-users. 12 of the 18 participants’ teams have
customer service representatives who parse tickets or complaints
from end users and pass them to the engineering teams. These
participants found it challenging to reproduce the reports from
end users, which were primarily made up of one-of instances and
broad descriptions. P4’s team tackles this challenge with an “internal
website where anybody can put potential inputs and expected model
outputs” which new models are tested on.

Another collaboration challenge described by 14 participants
is communicating model performance with managers and other
stakeholders. For example, P16’s management team often makes
decisions based solely on a high F1 score, while it is often the case
that diferent clients require diferent trade-ofs between precision
and recall. Many decisions on whether or not to deploy an up-
dated model requires shared knowledge and conversations between
engineers, managers, and customers on whether a new model is
holistically better than the existing model.

Since engineers often run analyses in ad-hoc scripts or notebooks,
knowledge of model behavior can be isolated. Other stakeholders
do not know how a model tends to behave, and can neither make
informed decisions on model usage nor provide information about
model errors to engineers for debugging.

4 DESIGN GOALS
From these interviews and the reviewed studies on ML evaluation,
we distilled a set of design goals that a behavioral evaluation system
should have. The goals focus on general evaluation challenges
identifed in the formative study, such as defning behaviors and
comparing models. With a system for behavioral evaluation, a user
should be able to:
D1. Evaluate models with diferent architectures, tasks, and

data types. Machine learning is a broad feld with diverse
models and tasks ranging from audio transcription to human
pose estimation. To reduce the learning curve and encourage
the reuse of analyses, users should be able to use one framework
to perform behavioral evaluations on most ML tasks.

Zeno: An Interactive Framework for Behavioral Evaluation of Machine Learning CHI ’23, April 23–28, 2023, Hamburg, Germany

Figure 2: zeno’s architecture overview. The zeno program and inputs (outlined in purple boxes) can either be hosted locally or
run on a remote machine. zeno takes a confguration fle with information such as paths to data folders, test fles, and metadata
and creates a parallelized data processing pipeline to run the decorated Python functions. The resulting UI is available through
an endpoint that can be accessed locally or hosted on a server.

D2. Defne and measure diverse model behaviors. Model be-
haviors are varied and complex, from demographic biases to
grammatical failures. Users should be able to encode most of
the behaviors across which they wish to evaluate their models.

D3. Track model performance over time. Practitioners are con-
tinually deploying updated models with new architectures
trained on improved data. Users should be able to track perfor-
mance across models and fnd potential regressions.

D4. Evaluate model performance without programming. Mod-
ern machine learning systems are built by large cross-functional
teams with nontechnical users. Users should be able to perform
behavioral analyses of models without having to write code.

5 ZENO: AN INTERACTIVE EVALUATION
FRAMEWORK

We used these goals to design and implement zeno, a general-
purpose framework for evaluating ML systems across diverse be-
haviors. zeno is made up of two linked components, a Python API
and an interactive user interface (UI). The Python API is used to
write functions providing the core building blocks of behavioral
evaluation such as model outputs, metrics, metadata, and trans-
formed instances. Outputs from the API are used to scafold the
interactive UI, which is the primary interface for doing behavioral
evaluation and testing. The zeno frontend has two primary views:
an Exploration UI for discovering and creating slices of data and
an Analysis UI for writing tests, authoring reports, and tracking
performance over time (D3).

Originally, we explored implementing zeno as either a plugin
for computational notebooks or a standalone user interface. We
decided on a combined programmatic API and interactive UI as
we found it could make zeno both extensible and accessible. The
general Python API allows zeno to be applied to diverse models,
data types, and behaviors (D1, D2), while the interactive UI allows
nontechnical users to run evaluation (D4).

zeno is distributed as a Python program. The Python package
includes the compiled frontend which is written in Svelte and uses
Vega-Lite [52] for visualizations and Arquero [24] for data manipu-
lation. To run zeno, users specify settings such as test fles, data
paths, and column names in a TOML confguration fle and launch
the processing and UI from the command line (Figure 2). Since
zeno hosts the UI as a URL endpoint, it can either be run locally or
run remotely on a server with more compute and still be accessed

by users on local machines. This architecture can scale to large
deployed settings and was tested with datasets with millions of
instances (e.g. DifusionDB [56], 2 million images (Section 6.4)).

5.0.1 Running example. To explain zeno’s concepts, we walk
through an example use case of a data scientist working at a com-
pany deploying a new model. In the following sections, we use
block quotes to show how zeno’s features would be used in the
example.

Emma is a data scientist at a startup developing a voice assistant.
Her company is using a simple audio transcription model and
she has been tasked with understanding how well the model
works for their data and what updates they need to make.

5.1 Python API: Extensible Model Analysis
A core component of zeno is an extensible Python API for run-
ning model inference and data processing. The ML landscape is
fragmented across many frameworks and libraries, especially for
diferent data and model types. Despite this fragmentation, most
ML libraries are based on Python, so we designed the backend API
for zeno as a set of Python decorator functions that can support
most current ML models (D1).

The zeno Python API (Figure 3) consists of four decorator func-
tions: @model, @metric, @distill, and @transform. We found that
these four functions support the building blocks of behavioral eval-
uation. All four functions take the same input, a Pandas DataFrame
[35] with metadata and a ZenoOptions object. We chose Pandas as
the API for the metadata table due to its popularity, which lowers
the learning curve for writing zeno functions for many data scien-
tists. The ZenoOptions object passes relevant information such as
column names and static fle paths to the decorated API functions.
Since zeno calls API functions dynamically for diferent models
and transformed inputs, ZenoOptions is necessary for a function
to access the correct columns of the DataFrame.

The two core functions that a user must implement to use zeno
are the @model and @metric functions. Functions decorated with
@model return a new function that returns the outputs for a given
model. Since this function is model-agnostic, any ML framework
or AI service can be evaluated using zeno (D1). The @metric deco-
rated functions return a summary number given a subset of data.
@metric functions can return classic metrics such as accuracy or
F1 score, but can also be used for specifc tests such as calculating
the percentage of changed outputs after data transformations (D2).

CHI ’23, April 23–28, 2023, Hamburg, Germany Cabrera et al.

Figure 3: The zeno Python API has four decorator functions:
@model, @metric, @distill, and @transform. The functions all
take the same inputs, a DataFrame and a ZenoOptions ob-
ject with information such as data paths and column names.
@model functions return a function for getting running model
inference. In the example above, the @model function loads a
speech-to-text model and returns a function that transcribes
audio data. @metric functions calculate aggregate metrics
on subsets of data. Above, the @metric function computes
the average word error rate (avg_wer) for transcribed audio.
@distill functions derive new metadata columns. Above, the
@distill function calculates the amplitude value from audio.
@transform functions produce new data inputs. Above, the
@transform function lowers the amplitude of audio samples.

Emma writes a @model function which calls her transcription
model and returns the transcribed text. She then uses a Python
library to implement various @metric functions for common
transcription metrics such as word error rate (WER).

The two other zeno decorator functions provide additional func-
tionalities that support behavioral evaluation. Datasets often do not
have sufcient metadata for users to create the specifc slices across
which they wish to evaluate their models. For example, a user may
want to create a slice for images with low exposure, but most image
datasets do not have the exposure level of an image in the metadata.
@distill decorated functions return a new DataFrame column for
a dataset, extracting additional metadata from instances, and allow-
ing users to defne more specifc slices (D2). Users may also want
to check the output of their model on modifed instances, especially
for robustness analyses or metamorphic tests. The @transform
function returns a new set of modifed instances from a subset
of instances. For the image exposure example above, a user could
write a transformation function that darkens images to check how
a model performs for diferent exposures.

Emma knows her users have a range of microphones across
which she wants her audio transcription model to work well. To
test these types of scenarios, she writes a @distill function that
calculates the amplitude of the sound inputs and a @transform
function that adds diferent types of noise.

The zeno backend builds a data processing pipeline to run the
decorated functions and calculate the outputs for the frontend. For
example, zeno parses the code of each @distill function to decide
whether it depends on model outputs and must be run for each
model. Additionally, zeno runs the processing and inference func-
tions in parallel, which is especially helpful for transform functions,
since each @distill and @model function needs to be run on each
transformed instance. Lastly, all zeno function outputs are cached
so any runs after the initial processing are instant.

5.2 Exploration UI: Create and Track Slices
To empower nontechnical stakeholders to perform behavioral anal-
yses, the main interface of zeno is an interactive UI (D4). Although
the initial @model and @metric functions are required to initially
set up zeno, the core behavioral evaluation steps can all be done in
the frontend UI by nontechnical users.

The primary tasks in behavioral evaluation are creating subsets
of data and calculating relevant metrics. The Exploration page is
the initial interface for zeno and allows users to explore, flter, and
create slices of data. It is divided into two sections, the instance
view and the metadata panel.

The instance view (Figure 4, C) is a grid display of data instances,
ground truth labels, and model outputs. Users can select which
model output they wish to see, which metric is calculated, and
which transformation is applied to the data using the drop-down
menus at the top of the UI. A key feature of the instance view is that
it is a modular Python package that supports any model and data
type (D1). Each view is a separate Python package that implements
a JavaScript function to render a subset of data. While views are
JavaScript functions, they are packaged as Python libraries so users
can install the views they need the same way they install the zeno

Zeno: An Interactive Framework for Behavioral Evaluation of Machine Learning CHI ’23, April 23–28, 2023, Hamburg, Germany

Figure 4: The Exploration UI allows users to see data instances and model outputs and investigate model performance. In
the fgure, zeno is shown for the audio transcription example described in Section 5. The interface has two components, the
Metadata Panel (A & B) and the Samples View (C). The Metadata Panel shows the metadata distributions of the dataset (B) and
the slices and folders a user has created (A). The metadata widgets are cross-fltered, with the purple bars showing the fltered
table distribution. The Samples View (C) shows the fltered data instances and outputs, currently those with 0.04 < amplitude <
0.12, along with the selected metric, in this case, accuracy.

Figure 5: The instance view of the Exploration UI (Figure 4, C) is a modular Python package that can be swapped out for diferent
models and data types. New views can be implemented with a single JavaScript fle. zeno currently has six implemented views,
shown here with the following datasets: image classifcation (CIFAR-10 [31]), audio transcription (Free Spoken Digit Dataset
[27]), image segmentation (Kvasir-SEG [28]), text classifcation (Amazon reviews [42]), timeseries classifcation (MotionSense
[34]), and object detection (MS-COCO [32])

CHI ’23, April 23–28, 2023, Hamburg, Germany Cabrera et al.

package. There are currently 6 views implemented (Figure 5), and
additional views can be created using a cookiecutter template.

The metadata panel (Figure 4, A & B) provides summary visual-
izations of the metadata columns and previews of user-generated
data slices. Each metadata column is shown as a row in the metadata
panel, displayed with a diferent widget depending on what type of
metadata it is. zeno supports 5 main metadata types: continuous,
nominal, boolean, datetime, and string. Each metadata widget is
interactive and can be fltered to reactively update the instance view
and other metadata widgets. When a metadata column is fltered,
the flter is shown above the instance view and the selected metric
is calculated for the current subset.

When a user fnds an interesting or signifcant subset of data,
they can save the current flters as a formal slice. Slices can also be
created in the slicing panel, which allows users to visually defne
and join flter predicates on metadata columns. These slices are
displayed at the top of the metadata panel with their size and the
selected metric, providing a quick look at the performance for each
slice. Users can also create folders to organize their slices.

Emma runs zeno to analyze her transcription model in the
Exploration UI. First, she flters the amplitude metadata widget
and fnds that the model is signifcantly worse at transcribing
quiet audio. To track this subset, she creates a slice and puts it
in the audio properties folder (Figure 4, A). She then selects the
white noise transformation and sees that the error rate increases
signifcantly. She notes that they may want to augment their
training data with noisy instances.

5.3 Analysis UI: Track and Test Slices Across
Models

Once users have created the slices they wish to track using the
Exploration UI, they are faced with the challenge of comparing
models and slices. The Analysis UI (Figure 6) provides visualizations,
reporting tools, and testing features to help users better understand
and compare the performance of multiple models (D3).

At the bottom of the Analysis page (Figure 6, F) is a table showing
the slices created in the Exploration page. To help users navigate
the slices, folders are shown as tabs above the table and can be used
to flter which slices are shown. Users can also select which metric
and transform is applied to each slice, and the resulting metric is
shown as a column for each model. To make it easier to detect
trends in slice performance over time, zeno shows a sparkline of
the selected metric across models for each slice (D3).

A common phenomenon for models deployed in the real world
is domain shift, where the real-world data distribution changes
over time and model performance degrades [37]. To alert users of
potential regressions in model performance, zeno detects slices
with performance that decreases between models. For each slice,
zeno fts a simple linear regression of the selected metric across
models, and users are alerted of slices with signifcant negative
slope by a downward arrow next to the sparkline (D3). zeno also
highlights slices with high variance, indicating potential unexpected
behavior, with a red up-and-down arrow next to the sparkline.

Since domain shift and model updates can lead to unexpected
changes in model performance, users may want to set tests for
expected slice metrics. We term these behavioral unit tests, functions

that determine whether a metric for a slice is in an expected range,
such as �������� > 70%. To create tests, users frst create a new
report (Figure 6, D), a collection of slices, and add to it the slices
they wish to test. They can then set an expectation for a certain
metric on each slice using boolean predicates on the metric value.
Models for which the test fails are highlighted in red in the report
table, with the overall number of tests that failed for the most recent
model shown next to each report in the report panel. Reports can
be exported as PDFs to be shared externally from Zeno (D4).

Emma uses the insights from the Exploration UI to train a few
new models with new and augmented data. In the Analysis UI
she sees that her new models are performing better for noisy
input audio, but there is a decreasing trend for instances with
lower amplitude. To ensure that this trend does not continue,
she creates a new report and adds slices for diferent levels of
amplitude. She then creates behavioral unit tests expecting each
slice to have an accuracy of over 65%.

6 CASE STUDIES
We collaborated with four ML practitioners to set up zeno on
models they developed or audited in their work. The goal of these
case studies was to answer our second research question, whether
zeno can help practitioners working on diverse ML tasks efectively
evaluate their models and discover important behaviors. We chose
these case studies as they represented a wide range of tasks (binary
classifcation, multi-class classifcation, image generation) and data
types (text, images, audio), testing how well zeno generalizes.

Before each study, we met with the case study participant to
understand the types of ML systems they use and decide which
model(s) they wished to evaluate using zeno. We then worked with
them asynchronously to set up an instance of zeno, with their
model, which they could access on their computer. Finally, we con-
ducted a one-hour study with an interview and think-aloud session
(two in-person, two virtual). During the study’s frst 15-30 minutes,
we asked participants about their existing approaches to model eval-
uation and the challenges they face. For the remainder of the study,
participants shared their screen and used zeno to evaluate the ML
model, describing their thought process and fndings while men-
tioning limitations and desired features. Our Institutional Review
Board (IRB) approved this as a separate study from the formative
interviews. In each of the following sections, we introduce the prob-
lem, describe the participant’s existing evaluation approach, and
detail their fndings from using zeno.

6.1 Case 1: UI Classifcation
For the frst case study, we worked with a researcher developing
a model to classify smartphone screenshots using a CNN-based
deep learning model, which they were evaluating on 10,000 images.
The model aims to make UIs more accessible to people with visual
impairments by informing them of the type of interface they are
looking at. The participant was looking to expand their system
to screenshots from other devices, e.g., tablets, and wanted to un-
derstand their model’s current performance and generalizability.
Uniquely for this case study, the participant ran zeno on a cloud
server that hosted their data and models and they accessed the
zeno UI remotely on their laptop.

Zeno: An Interactive Framework for Behavioral Evaluation of Machine Learning CHI ’23, April 23–28, 2023, Hamburg, Germany

Figure 6: The Analysis UI helps users visualize trends of model performance across slices, and allows them to create behavioral
unit tests of expected slice metrics. In the fgure, zeno is shown for the CIFAR-10 image classifcation task comparing models
trained for diferent epochs. The Slice Drawer (F) shows the performance of slices across models, including a sparkline with
the metric trend over time. Users can create new reports in the Report Panel (D) and add slices from the Slice Drawer. Lastly, in
the Report View (E), users can create behavioral unit tests of expected model performance.

6.1.1 Existing evaluation approach. The frst participant primarily
uses computational notebooks for both qualitative and quantitative
evaluation of their models. For qualitative analyses, they select
“some test cases that I hypothesized are hard and easy for the model”,
instances for which they check the model’s output to understand
how it is behaving. For example, for this model they check a specifc
screenshot of a login screen with a list structure that they expect
the model to misclassify as a list view. For every new domain in
which they train a model, the participant spends signifcant time
creating dedicated Python notebooks to display data instances and
model outputs for this type of qualitative analysis.

The participant also uses quantitative metrics for evaluation,
especially for more complex domains such as object detection where
they use a combination of metrics such as mean Average Precision
(mAP) at diferent scales. As with the qualitative analyses, the
participant authors specifc Python notebooks to calculate these
metrics. They also make an efort to write evaluation code that is
distinct from the training code to ensure that they avoid any bugs
such as data leakage in the training process.

6.1.2 Findings with zeno. The participant found zeno’s interac-
tive instance view and metadata distributions extremely useful
for discovering new failures, systematically validating qualitative

analyses, and sharing results with others. Just from the initial Ex-
ploration UI, the participant found the ability to quickly browse
dozens of instances much more valuable than the static notebooks
they used previously. Within a few seconds, they found new model
failures they noted to validate later and add as new qualitative test
examples. The participant wished to flter the instance view to only
see failures or have the system suggest slices to make it easier to
quickly fnd model errors.

With the metadata distributions in the Exploration UI the par-
ticipant was also able to validate some of their existing qualitative
hypotheses more systematically. For example, they confrmed their
hypothesis that the model would perform worse for underrepre-
sented classes in the dataset by fltering for the most underrepre-
sented classes using the class histogram (see Figure 7). They found
the ability to save such slices of data to share with others to be
a powerful feature and wished to “take a very well known dataset
such as ImageNet, fnd slices that are questionable and share them”
to help others test their own model for such issues.

Lastly, the participant found that the code for the zeno API was
similar to what they used in notebooks and that they “could totally
get used to the zeno API”. While they were able to copy and paste
their existing code into zeno, they wished for a more streamlined
setup process, for example, with automatically generated zeno
confguration fles for common data types and ML libraries.

CHI ’23, April 23–28, 2023, Hamburg, Germany Cabrera et al.

Figure 7: A screenshot of the Exploration UI from the UI classifcation case study (Section 6.1). The participant selected
underrepresented ground-truth classes and confrmed that the model performance is signifcantly worse for them.

6.2 Case 2: Breast Cancer Detection
In the second case study, we worked with a researcher who was
auditing a breast cancer classifcation model on a dataset of 6,635
images. The model, also a CNN-based deep learning model, divides
mammogram images into small patches and detects whether there
is a lesion present in each patch. The model was trained on a dataset
provided by a collaboration with clinical researchers at an academic
hospital system in the United States. Although the model had a
reasonably high accuracy of 80%, the developers had difculty un-
derstanding the failure modes of the model, especially since the
dataset was de-identifed and had minimal metadata. The partici-
pant in our case study wanted to discover meaningful dimensions
across which the model failed in order to guide model updates.

6.2.1 Existing evaluation approach. Unlike the frst case study par-
ticipant, the participant in the second study had only used quantita-
tive aggregate metrics when evaluating models. They “had not used
any platform or framework to understand how a model performed on
specifc features of the metadata”, and fully relied on aggregate met-
rics as a measure for model quality. This involved creating Python
scripts to load a model and data and calculate metrics such as AUC
and F1 score. Attempting to improve the breast cancer classifcation
model led to their frst foray into behavioral evaluation.

6.2.2 Findings with zeno. The participant found that the combina-
tion of the extensible @distill functions and metadata distribu-
tions was essential for fnding slices with signifcant areas of error.

Since the participant was not a domain expert, they consulted with
medical imaging researchers that recommended a Python library,
pyradiomics [55], to extract physiologically relevant characteris-
tics from medical images. The participant implemented dozens of
@distill functions using pyradiomics functions that encoded im-
portant regional information, such as grey-level values, that was
not captured by their original features. They also wrote a couple
more @distill functions to encode the position of each image
patch, a hypothesis they had from looking at model failures in the
instance view. The participant only had to add a couple of lines of
Python to use all of these functions in zeno.

Since the dataset had minimal existing metadata, interactively
fltering the @distilled distributions was the primary way the
participant found patterns of failure. By interactively cross-fltering
the @distilled metadata histograms, they found that the model
performed signifcantly worse for images with higher tissue density,
a phenomenon that also occurs with human radiologists [30]. They
also found that the model was trained on many background patches
of image that did not include part of the breast, which also impacted
the aggregate metrics. The participant noted that they may want to
clean the data and upsample instances relevant to the classifcation
task. Due to the quantity and complexity of these analyses, the
participant wished for more expressive slice comparisons, such as
comparing multiple slices at a time in the Exploration UI. Otherwise,
using zeno the participant found signifcant failures which they
had not been able to fnd using Python scripts.

Zeno: An Interactive Framework for Behavioral Evaluation of Machine Learning CHI ’23, April 23–28, 2023, Hamburg, Germany

6.3 Case 3: Voice Commands
The third case study was with a participant who was developing
a decision-tree model to detect the direction in which a person is
speaking using an array of microphones, which they were eval-
uating on 11,520 recordings. The goal of the model is to predict
to which microphone, often a smart speaker, a person is talking
in order to respond from the right speaker. The participant had
collected data from diverse setups to understand the performance
of their model in the diferent scenarios.

6.3.1 Existing evaluation approach. Most of the models the partic-
ipant works on are sensor-based systems highly impacted by the
physical nature of the data signals, for example, echoes and noise
in sound data. Thus, in addition to calculating classic aggregate
metrics, the participant generates and tests inputs with diverse
physical properties. For example, in the model described above, the
participant collected audio from speakers next to a wall and in the
middle of the room to since they thought the rebounding sound
from the wall might confuse the model.

To evaluate such scenarios, the participant collects data in dozens
of confgurations, and so often has extensive metadata for behav-
ioral analysis. Like the other participants, they use computational
notebooks to manually split the data across diferent metadata fea-
tures and print out multiple metrics. Due to their high quantity of
metadata, the participant only looks at simple slices of data, and
does not often explore intersectional slices of multiple features.

6.3.2 Findings with zeno. Using zeno, the participant was both
able to validate all of their hypotheses signifcantly faster and dis-
covered potential causes for systematic model failures. For example,
they confrmed a fnding from previous analyses where a “model
worked very well at 1, 2, and 3 meters, but there was a sharp dropof
at 5 meters” by simply looking at the metadata distributions. They
also used the spectrogram visualization of instances in each slice to
look for potential reasons for the steep dropof in performance, for
example, signals with lower amplitude. Additionally, they found
the cross-fltering between metadata histograms to be useful to fnd
potential interactions between physical features, such as audio both
at a distance and a speaker against a wall. Cross-fltering combined
with expressive instance visualizations of the audio data was es-
sential for both confrming their hypothesis and ideating potential
causes for model failures.

Much of the participant’s work is focused on collecting new
data, so they suggested data-related improvements for zeno. Since
the participant often tests their model with their own inputs, they
wished for a direct way to add new instances to zeno. They also
mentioned having more interactive transformations, for example,
having a slider to gradually apply a transformation such as reducing
the amplitude of an audio fle.

6.4 Case 4: Text-to-Image Generation
For our last case study, we worked with a non-technical researcher
who explores biases in deployed ML systems, in this case, the text-to-
image generation model Stable Difusion [50]. To audit this model
they used zeno with the DifusionDB Dataset [56], which consists

of 2 million prompt-image pairs generated using the Stable Difu-
sion model. The participant wanted to explore potential systematic
biases in the images generated by Stable Difusion.

6.4.1 Existing evaluation approach. The participant’s work is pri-
marily focused on auditing public-facing algorithmic systems such
as search engine results and social media ads. They exclusively con-
duct manual, ad-hoc audits, testing a range of specifc inputs such
as search queries and individually checking the model’s outputs.
The inputs they test are often guided by existing knowledge of
model biases, for example, the participant has “used some lingustic
discrimination knowledge [...] such as knowing that certain words
tend to be gendered” to test inputs with likely biased results.

The participant also works with end users of algorithmic systems
to understand how they audit models and what biases they are able
to fnd. They found that “people often found issues in searches that
none of the researchers, including me, had even thought of”. Having
diverse users test models is essential for fnding issues, and the
participant works with end-users to surface new limitations.

6.4.2 Findings with zeno. When auditing the DifusionDB dataset
with zeno, the participant took a similar approach to their previous
audits but was able to come up with more systematic and validated
conclusions of model biases. Their primary interaction with zeno
was using the string search metadata cell to look for certain prompt
inputs. Similar to how they approached debugging search engines,
they used prior knowledge of likely biased prompts but were able
to see dozens of examples instead of one prompt at a time. For
example, when searching for prompts with the “scientist” in them,
every generated image was male, encoding a typical gender bias.
By seeing dozens of prompts the participant was able to gather
more evidence that the model produced this pattern systematically
and was not due to a one-of prompt.

The DifusionDB dataset also includes a measure of toxicity, or
“NSFW” level, for both the input prompts and generated images.
These numbers were represented as histogram distributions in
zeno, and the participant found it invaluable to flter by and fnd
potential biases. One interesting experiment the participant tried
was to see if the average distribution of the NSFW tag would go
up for certain terms. For example, they saw small increases in the
distribution when searching for certain gendered terms, including
the word “girl”, which refected that the images generated of women
were more sexualized than those of men. They could only see this
dataset-level pattern using the combination of zeno’s metadata
distribution and instance view.

Lastly, the participant refected on how usable zeno would be
for everyday users of algorithmic systems. They mentioned that
technical terms such as “metadata” may be too niche for everyday
users and could be renamed. Otherwise, they found the system
intuitive and usable if set up for use by diverse end users.

7 DISCUSSION
Our case studies showed that zeno’s complementary API and UI
empowered practitioners to fnd signifcant model issues across
datasets and tasks. More generally, we found that a framework
for behavioral evaluation can be efective across diverse data and
model types (D1). This generalizability can be seen by comparing

CHI ’23, April 23–28, 2023, Hamburg, Germany Cabrera et al.

two of the case studies, the malignant tumor detection (Section 6.2)
and audio classifcation (Section 6.3) cases. The two cases difered
signifcantly in their data type (image vs. audio), task (binary vs.
multi-class classifcation), model (CNN vs. decision tree), and end
goal (model development vs. auditing). Despite these diferences,
both participants could efectively discover and encode model be-
haviors they wished to test and found limitations ranging from
robustness to domain shift (D2).

zeno’s diferent afordances made the behavioral evaluation pro-
cess easier, quicker, and more efective, depending on the user’s
goals and the challenges of each particular task. For example, in
Case 2, the participant found the extensible API essential for cre-
ating metadata to analyze their model across (D2), while in case
3, the participant found the interactive visualizations more useful
given the extensive metadata already present in their dataset. zeno
also supports users’ particular strengths and skillsets - without
using the API, our non-technical case study participant (Case 4)
was still able to fnd signifcant model biases by using their domain
knowledge to interact with the UI (D4).

Participants in the case studies found that zeno was easily inte-
grated into their workfows, requiring minimal efort to adapt their
code to work with the zeno API (D1). For example, the participant
in case study 1 only modifed a few lines of their inference code to
work with zeno, and the participant in the second case study was
able to use a radiomics library in zeno with minimal setup. The
participants also suggested ways in which zeno could be made even
easier to use, such as automatically generating zeno API functions
and confguration fles for common ML libraries.

While we validated that most of the design goals were met by
zeno, our case studies did not thoroughly explore how zeno could
be used over longer periods (D3). All four participants worked
with early-stage models and only used zeno for a limited time.
Longer-term, in-situ studies would provide more nuanced feedback
for the utility of zeno’s model comparison features. A beneft of
zeno’s ease of use, both with the API and UI, is that users can
immediately start using zeno’s model tracking and comparison
features as models move from research to deployment.

8 LIMITATIONS AND FUTURE WORK
zeno provides a general and extensible framework for the behav-
ioral evaluation of ML, but leaves signifcant room to better address
the challenges in the evaluation process.

Slice discovery. A central challenge for behavioral evaluation is
knowing which behaviors are important to end users and encoded
by a model. To directly encourage the reuse of model functions to
scafold discovery, we are currently designing ZenoHub, a collab-
orative repository where people can share their zeno functions
and fnd relevant analysis components more easily. Including slice
discovery methods directly in zeno could also help users fnd impor-
tant behaviors. zeno provides the common medium of representing
metadata and slices that practitioners can use to interact with and
use the results of these discovery methods.

Improved visualizations. Defning and testing metrics on data slices
is the core of zeno, but it only provides a few simple visualiza-
tions of data and slices in a grid and table view. There are many

more powerful visualization types that could improve the usabil-
ity of zeno. Instance views that encode semantic similarity, such
as DendroMap [4], Facets [46], or AnchorViz [12], could improve
users’ ability to fnd patterns and new behaviors in their data. zeno
can also adapt existing visualizations of ML performance, such as
ML Cube [29], Neo [23], or ConfusionFlow [25], to better visualize
model behaviors. For example, grid views showing the intersections
of slices could highlight important subsets of data.

Scaling. zeno has a few optimizations for scaling to large datasets,
including parallel computation and caching, but machine learning
datasets are continuously growing and additional optimizations
could speed up processing considerably. A potential update would
be to support processing in distributed computing clusters using a
library such as Ray [39]. Another bottleneck is the cross-fltering of
dozens of histograms on tables with millions of rows. zeno could
implement an optimization strategy like Falcon [38] to support live
cross-fltering on large datasets.

Model improvement. zeno is focused exclusively on evaluation and
does not include methods to update models and fx discovered
failures. Future work can explore how to directly use the insights
from zeno to improve model performance. For example, there are
promising results in using data slices to improve model perfor-
mance, such as slice-based learning [14] and group distributionally
robust optimization (GDRO) [33, 51].

Further evaluation. The case studies evaluated zeno on real-world
ML systems, but further evaluations could better elucidate the afor-
dances and limitations of zeno. Future evaluations could explore
how usable zeno is for additional non-technical users and how well
it works for continually updated deployed systems.

9 CONCLUSION
Behavioral evaluation of machine learning is essential to detect
and fx model behaviors such as biases and safety issues. In this
work, we explored the challenges of ML evaluation and designed a
general-purpose tool for evaluating models across behaviors.

To identify specifc challenges for ML evaluation, we conducted
formative interviews with 18 ML practitioners. From the interview
results we derived four main design goals for an evaluation system,
including supporting comparison over time and no-code analysis.
We used these goals to design and implement zeno, a general-
purpose framework for defning and tracking diverse model be-
haviors across diferent ML tasks, models, and data types. zeno
combines a Python decorator API for defning core building blocks
with an interactive UI for creating slices and reports.

We showed how zeno can be applied to diverse domains through
four case studies with practitioners evaluating real-world models.
Participants in the case studies confrmed existing fndings, hypoth-
esized new failures, and validated and discovered behaviors using
zeno. As a general framework for behavioral evaluation, zeno can
incorporate future features, such as error discovery methods and
visualizations, to support the growing complexity of models and
encourage the deployment of responsible ML systems.

Zeno: An Interactive Framework for Behavioral Evaluation of Machine Learning CHI ’23, April 23–28, 2023, Hamburg, Germany

ACKNOWLEDGMENTS
We would like to thank Fred Hohman, Alex Baüerle, Will Epper-
son, and Dominik Moritz for their feedback. This material is based
upon work supported by a Mozilla Technology Fund grant, a Cisco
Research Grant, an Amazon Research Award, a National Science
Foundation grant under No. IIS-2040942, and the National Science
Foundation Graduate Research Fellowship Program under grant
No. DGE-1745016. Any opinions, fndings, and conclusions or rec-
ommendations expressed in this material are those of the authors
and do not necessarily refect the views of the grantors.

REFERENCES
[1] M. Arnold, D. Piorkowski, D. Reimer, J. Richards, J. Tsay, K. R. Varshney, R. K. E.

Bellamy, M. Hind, S. Houde, S. Mehta, A. Mojsilovic, R. Nair, K. Natesan Rama-
murthy, and A. Olteanu. 2019. FactSheets: Increasing trust in AI services through
supplier’s declarations of conformity. IBM Journal of Research and Development
63, 4/5 (July 2019), 6:1–6:13. https://doi.org/10.1147/JRD.2019.2942288

[2] Josh Attenberg, Panagiotis G. Ipeirotis, and Foster Provost. 2011. Beat the Ma-
chine: Challenging Workers to Find the Unknown Unknowns.

[3] Solon Barocas and Andrew D Selbst. 2018. Big Data’s Disparate Impact. SSRN
Electronic Journal 671 (2018), 671–732. https://doi.org/10.2139/ssrn.2477899

[4] Donald Bertucci, Md Montaser Hamid, Yashwanthi Anand, Anita Ruangrotsakun,
Delyar Tabatabai, Melissa Perez, and Minsuk Kahng. 2022. DendroMap: Visual
Exploration of Large-Scale Image Datasets for Machine Learning with Treemaps.
IEEE Transactions on Visualization and Computer Graphics (TVCG) (2022). https:
//div-lab.github.io/dendromap/ Publisher: IEEE.

[5] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora,
Sydney von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon,
Niladri Chatterji, Annie Chen, Kathleen Creel, Jared Quincy Davis, Dora Dem-
szky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John
Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren
Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori
Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu,
Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth
Karamcheti, Geof Keeling, Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark
Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal Ladhak, Mina
Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu
Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell, Zanele
Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman,
Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan, Julian Nyarko, Giray Ogut,
Laurel Orr, Isabel Papadimitriou, Joon Sung Park, Chris Piech, Eva Portelance,
Christopher Potts, Aditi Raghunathan, Rob Reich, Hongyu Ren, Frieda Rong,
Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christopher Ré, Dorsa Sadigh, Shiori
Sagawa, Keshav Santhanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin, Ro-
han Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang, William Wang,
Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan
You, Matei Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang,
Lucia Zheng, Kaitlyn Zhou, and Percy Liang. 2022. On the Opportunities and
Risks of Foundation Models. http://arxiv.org/abs/2108.07258 arXiv:2108.07258
[cs].

[6] Joy Buolamwini and Timnit Gebru. 2018. Gender Shades: Intersectional Accu-
racy Disparities in Commercial Gender Classifcation. In Proceedings of the 1st
Conference on Fairness, Accountability and Transparency (Proceedings of Machine
Learning Research, Vol. 81), Sorelle A. Friedler and Christo Wilson (Eds.). PMLR,
77–91. Buolamwini2018.

[7] Alex Bäuerle, Ángel Alexander Cabrera, Fred Hohman, Megan Maher, David
Koski, Xavier Suau, Titus Barik, and Dominik Moritz. 2022. Symphony: Com-
posing Interactive Interfaces for Machine Learning. In CHI Conference on Hu-
man Factors in Computing Systems. ACM, New Orleans LA USA, 1–14. https:
//doi.org/10.1145/3491102.3502102

[8] Ángel Alexander Cabrera, Abraham J. Druck, Jason I. Hong, and Adam Perer.
2021. Discovering and Validating AI Errors With Crowdsourced Failure Reports.
Proceedings of the ACM on Human-Computer Interaction 5, CSCW2 (Oct. 2021),
1–22. https://doi.org/10.1145/3479569

[9] Ángel Alexander Cabrera, Will Epperson, Fred Hohman, Minsuk Kahng, Jamie
Morgenstern, and Duen Horng Chau. 2019. FairVis: Visual Analytics for Dis-
covering Intersectional Bias in Machine Learning. In 2019 IEEE Conference on
Visual Analytics Science and Technology (VAST). 46–56. https://doi.org/10.1109/
VAST47406.2019.8986948

[10] Ángel Alexander Cabrera, Marco Tulio Ribeiro, Bongshin Lee, Rob DeLine, Adam
Perer, and Steven M. Drucker. 2022. What Did My AI Learn? How Data Scien-
tists Make Sense of Model Behavior. ACM Transactions on Computer-Human

Interaction (June 2022), 3542921. https://doi.org/10.1145/3542921
[11] Lingjiao Chen, Tracy Cai, Matei Zaharia, and James Zou. 2021. Did the Model

Change? Efciently Assessing Machine Learning API Shifts. arXiv:2107.14203 [cs,
stat] (July 2021). http://arxiv.org/abs/2107.14203 arXiv: 2107.14203.

[12] Nan-Chen Chen, Jina Suh, Johan Verwey, Gonzalo Ramos, Steven Drucker, and
Patrice Simard. 2018. AnchorViz: Facilitating Classifer Error Discovery through
Interactive Semantic Data Exploration. In 23rd International Conference on In-
telligent User Interfaces. ACM, Tokyo Japan, 269–280. https://doi.org/10.1145/
3172944.3172950

[13] Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Pak-Lok Poon, Dave Towey, T. H.
Tse, and Zhi Quan Zhou. 2019. Metamorphic Testing: A Review of Challenges
and Opportunities. Comput. Surveys 51, 1 (Jan. 2019), 1–27. https://doi.org/10.
1145/3143561

[14] Vincent S. Chen, Sen Wu, Zhenzhen Weng, Alexander Ratner, and Christopher
Ré. 2019. Slice-based Learning: A Programming Model for Residual Learning in
Critical Data Slices. NeurIPS (2019). http://arxiv.org/abs/1909.06349

[15] Yeounoh Chung, Tim Kraska, Neoklis Polyzotis, Ki Hyun Tae, and Steven Euijong
Whang. 2019. Slice Finder: Automated Data Slicing for Model Validation. In 2019
IEEE 35th International Conference on Data Engineering (ICDE). IEEE, Macao,
Macao, 1550–1553. https://doi.org/10.1109/ICDE.2019.00139

[16] Anamaria Crisan, Margaret Drouhard, Jesse Vig, and Nazneen Rajani. 2022.
Interactive Model Cards: A Human-Centered Approach to Model Documentation.
In 2022 ACM Conference on Fairness, Accountability, and Transparency. ACM,
Seoul Republic of Korea, 427–439. https://doi.org/10.1145/3531146.3533108

[17] Wesley Hanwen Deng, Manish Nagireddy, Michelle Seng Ah Lee, Jatinder Singh,
Zhiwei Steven Wu, Kenneth Holstein, and Haiyi Zhu. 2022. Exploring How
Machine Learning Practitioners (Try To) Use Fairness Toolkits. In 2022 ACM
Conference on Fairness, Accountability, and Transparency. ACM, Seoul Republic
of Korea, 473–484. https://doi.org/10.1145/3531146.3533113

[18] Greg d’Eon, Jason d’Eon, James R. Wright, and Kevin Leyton-Brown. 2021. The
Spotlight: A General Method for Discovering Systematic Errors in Deep Learning
Models. arXiv:2107.00758 [cs, stat] (Oct. 2021). http://arxiv.org/abs/2107.00758
arXiv: 2107.00758.

[19] Sabri Eyuboglu, Maya Varma, Khaled Saab, Jean-Benoit Delbrouck, Christopher
Lee-Messer, Jared Dunnmon, James Zou, and Christopher Ré. 2022. Domino:
Discovering Systematic Errors with Cross-Modal Embeddings. arXiv:2203.14960
[cs] (April 2022). http://arxiv.org/abs/2203.14960 arXiv: 2203.14960.

[20] Jules Françoise, Baptiste Caramiaux, and Téo Sanchez. 2021. Marcelle: Composing
Interactive Machine Learning Workfows and Interfaces. In The 34th Annual ACM
Symposium on User Interface Software and Technology. ACM, Virtual Event USA,
39–53. https://doi.org/10.1145/3472749.3474734

[21] Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan,
Hanna Wallach, Hal Daumé Iii, and Kate Crawford. 2021. Datasheets for datasets.
Commun. ACM 64, 12 (Dec. 2021), 86–92. https://doi.org/10.1145/3458723

[22] Karan Goel, Nazneen Rajani, Jesse Vig, Samson Tan, Jason Wu, Stephan Zheng,
Caiming Xiong, Mohit Bansal, and Christopher Ré. 2021. Robustness Gym:
Unifying the NLP Evaluation Landscape. (2021), 1–34. http://arxiv.org/abs/2101.
04840

[23] Jochen Görtler, Fred Hohman, Dominik Moritz, Kanit Wongsuphasawat, Dong-
hao Ren, Rahul Nair, Marc Kirchner, and Kayur Patel. 2022. Neo: Generalizing
Confusion Matrix Visualization to Hierarchical and Multi-Output Labels. In CHI
Conference on Human Factors in Computing Systems. ACM, New Orleans LA USA,
1–13. https://doi.org/10.1145/3491102.3501823

[24] Jefrey Heer. 2020. Arquero: Query processing and transformation of array-
backed data tables. https://uwdata.github.io/arquero/

[25] Andreas Hinterreiter, Peter Ruch, Holger Stitz, Martin Ennemoser, Jurgen
Bernard, Hendrik Strobelt, and Marc Streit. 2020. ConfusionFlow: A model-
agnostic visualization for temporal analysis of classifer confusion. IEEE Trans-
actions on Visualization and Computer Graphics (2020), 1–1. https://doi.org/10.
1109/TVCG.2020.3012063

[26] Aspen Hopkins and Serena Booth. 2021. Machine Learning Practices Outside Big
Tech: How Resource Constraints Challenge Responsible Development. In AIES
2021 - Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society.
Association for Computing Machinery, Inc, 134–145. https://doi.org/10.1145/
3461702.3462527

[27] Zohar Jackson, César Souza, Jason Flaks, Yuxin Pan, Hereman Nicolas, and
Adhish Thite. 2018. Jakobovski/Free-Spoken-Digit-Dataset: V1.0.8. https:
//doi.org/10.5281/ZENODO.1342401

[28] Debesh Jha, Pia H. Smedsrud, Michael A. Riegler, Pål Halvorsen, Thomas de
Lange, Dag Johansen, and Håvard D. Johansen. 2020. Kvasir-SEG: A Segmented
Polyp Dataset. In MultiMedia Modeling, Yong Man Ro, Wen-Huang Cheng,
Junmo Kim, Wei-Ta Chu, Peng Cui, Jung-Woo Choi, Min-Chun Hu, and Wesley
De Neve (Eds.). Vol. 11962. Springer International Publishing, Cham, 451–462.
https://doi.org/10.1007/978-3-030-37734-2_37 Series Title: Lecture Notes in
Computer Science.

[29] Minsuk Kahng, Dezhi Fang, and Duen Horng (Polo) Chau. 2016. Visual Explo-
ration of Machine Learning Results Using Data Cube Analysis. In Proceedings of
the Workshop on Human-In-the-Loop Data Analytics - HILDA ’16. ACM Press, San

https://doi.org/10.1147/JRD.2019.2942288
https://doi.org/10.2139/ssrn.2477899
https://div-lab.github.io/dendromap/
https://div-lab.github.io/dendromap/
http://arxiv.org/abs/2108.07258
https://doi.org/10.1145/3491102.3502102
https://doi.org/10.1145/3491102.3502102
https://doi.org/10.1145/3479569
https://doi.org/10.1109/VAST47406.2019.8986948
https://doi.org/10.1109/VAST47406.2019.8986948
https://doi.org/10.1145/3542921
http://arxiv.org/abs/2107.14203
https://doi.org/10.1145/3172944.3172950
https://doi.org/10.1145/3172944.3172950
https://doi.org/10.1145/3143561
https://doi.org/10.1145/3143561
http://arxiv.org/abs/1909.06349
https://doi.org/10.1109/ICDE.2019.00139
https://doi.org/10.1145/3531146.3533108
https://doi.org/10.1145/3531146.3533113
http://arxiv.org/abs/2107.00758
http://arxiv.org/abs/2203.14960
https://doi.org/10.1145/3472749.3474734
https://doi.org/10.1145/3458723
http://arxiv.org/abs/2101.04840
http://arxiv.org/abs/2101.04840
https://doi.org/10.1145/3491102.3501823
https://uwdata.github.io/arquero/
https://doi.org/10.1109/TVCG.2020.3012063
https://doi.org/10.1109/TVCG.2020.3012063
https://doi.org/10.1145/3461702.3462527
https://doi.org/10.1145/3461702.3462527
https://doi.org/10.5281/ZENODO.1342401
https://doi.org/10.5281/ZENODO.1342401
https://doi.org/10.1007/978-3-030-37734-2_37

CHI ’23, April 23–28, 2023, Hamburg, Germany

Francisco, California, 1–6. https://doi.org/10.1145/2939502.2939503
[30] Thomas M. Kolb, Jacob Lichy, and Jefrey H. Newhouse. 2002. Comparison of the

Performance of Screening Mammography, Physical Examination, and Breast US
and Evaluation of Factors that Infuence Them: An Analysis of 27,825 Patient
Evaluations. Radiology 225, 1 (Oct. 2002), 165–175. https://doi.org/10.1148/radiol.
2251011667

[31] Alex Krizhevsky, Geofrey Hinton, and others. 2009. Learning multiple layers of
features from tiny images. (2009). Publisher: Citeseer.

[32] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C. Lawrence Zitnick. 2014. Microsoft COCO: Common
Objects in Context. In Computer Vision – ECCV 2014, David Fleet, Tomas Pajdla,
Bernt Schiele, and Tinne Tuytelaars (Eds.). Vol. 8693. Springer International
Publishing, Cham, 740–755. https://doi.org/10.1007/978-3-319-10602-1_48 Series
Title: Lecture Notes in Computer Science.

[33] Evan Zheran Liu, Behzad Haghgoo, Annie S. Chen, Aditi Raghunathan, Pang Wei
Koh, Shiori Sagawa, Percy Liang, and Chelsea Finn. 2021. Just Train Twice: Im-
proving Group Robustness without Training Group Information. arXiv:2107.09044
[cs, stat] (Sept. 2021). http://arxiv.org/abs/2107.09044 arXiv: 2107.09044.

[34] Mohammad Malekzadeh, Richard G. Clegg, Andrea Cavallaro, and Hamed Had-
dadi. 2019. Mobile Sensor Data Anonymization. In Proceedings of the International
Conference on Internet of Things Design and Implementation (IoTDI ’19). ACM,
New York, NY, USA, 49–58. https://doi.org/10.1145/3302505.3310068 event-place:
Montreal, Quebec, Canada.

[35] Wes McKinney. 2010. Data Structures for Statistical Computing in Python. Austin,
Texas, 56–61. https://doi.org/10.25080/Majora-92bf1922-00a

[36] Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman,
Ben Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. 2019.
Model Cards for Model Reporting. In Proceedings of the Conference on Fairness,
Accountability, and Transparency. ACM, Atlanta GA USA, 220–229. https://doi.
org/10.1145/3287560.3287596

[37] Jose G. Moreno-Torres, Troy Raeder, Rocío Alaiz-Rodríguez, Nitesh V. Chawla,
and Francisco Herrera. 2012. A unifying view on dataset shift in classifcation.
Pattern Recognition 45, 1 (2012), 521–530. https://doi.org/10.1016/j.patcog.2011.
06.019

[38] Dominik Moritz, Bill Howe, and Jefrey Heer. 2019. Falcon: Balancing Interactive
Latency and Resolution Sensitivity for Scalable Linked Visualizations. In Proceed-
ings of the 2019 CHI Conference on Human Factors in Computing Systems. ACM,
Glasgow Scotland Uk, 1–11. https://doi.org/10.1145/3290605.3300924

[39] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard
Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan,
and Ion Stoica. 2018. Ray: A Distributed Framework for Emerging AI Applications.
http://arxiv.org/abs/1712.05889 arXiv:1712.05889 [cs, stat].

[40] Nadia Nahar, Shurui Zhou, Grace Lewis, and Christian Kästner. 2021. Collab-
oration Challenges in Building ML-Enabled Systems: Communication, Docu-
mentation, Engineering, and Process. arXiv:2110.10234 [cs] (Dec. 2021). http:
//arxiv.org/abs/2110.10234 arXiv: 2110.10234.

[41] National Transportation Safety Board. 2019. Collision Between Vehicle Controlled
by Developmental Automated Driving System and Pedestrian. https://www.
ntsb.gov/news/events/Pages/2019-HWY18MH010-BMG.aspx

[42] Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019. Justifying Recommendations
using Distantly-Labeled Reviews and Fine-Grained Aspects. In Proceedings of
the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-

IJCNLP). Association for Computational Linguistics, Hong Kong, China, 188–197.
https://doi.org/10.18653/v1/D19-1018

[43] Besmira Nushi, Ece Kamar, and Eric Horvitz. 2018. Towards Accountable AI: Hy-
brid Human-Machine Analyses for Characterizing System Failure. In Proceedings
of the AAAI Conference on Human Computation and Crowdsourcing, Vol. 6. 10.

[44] Luke Oakden-Rayner, Jared Dunnmon, Gustavo Carneiro, and Christopher Re.
2020. Hidden stratifcation causes clinically meaningful failures in machine
learning for medical imaging. In Proceedings of the ACM Conference on Health,
Inference, and Learning. ACM, Toronto Ontario Canada, 151–159. https://doi.
org/10.1145/3368555.3384468

Cabrera et al.

[45] Zhongyi Pei, Lin Liu, Chen Wang, and Jianmin Wang. 2022. Requirements En-
gineering for Machine Learning: A Review and Refection. In 2022 IEEE 30th
International Requirements Engineering Conference Workshops (REW). IEEE, Mel-
bourne, Australia, 166–175. https://doi.org/10.1109/REW56159.2022.00039

[46] Mahima Pushkarna, James Wexler, and Jimbo Wilson. 2017. Facets: An Open
Source Visualization Tool for Machine Learning Training Data. https://pair-
code.github.io/facets/

[47] Iyad Rahwan, Manuel Cebrian, Nick Obradovich, Josh Bongard, Jean-François
Bonnefon, Cynthia Breazeal, Jacob W. Crandall, Nicholas A. Christakis, Iain D.
Couzin, Matthew O. Jackson, Nicholas R. Jennings, Ece Kamar, Isabel M.
Kloumann, Hugo Larochelle, David Lazer, Richard McElreath, Alan Mislove,
David C. Parkes, Alex ‘Sandy’ Pentland, Margaret E. Roberts, Azim Sharif,
Joshua B. Tenenbaum, and Michael Wellman. 2019. Machine Behaviour. Nature
568, 7753 (April 2019), 477–486. https://doi.org/10.1038/s41586-019-1138-y

[48] Marco Tulio Ribeiro and Scott Lundberg. 2022. Adaptive Testing and Debugging
of NLP Models. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Association for Computational
Linguistics, Dublin, Ireland, 3253–3267. https://doi.org/10.18653/v1/2022.acl-
long.230

[49] Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. 2020.
Beyond Accuracy: Behavioral Testing of {NLP} Models with {C}heck{L}ist. In
Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics. Association for Computational Linguistics, Online, 4902–4912. https:
//doi.org/10.18653/v1/2020.acl-main.442

[50] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn
Ommer. 2022. High-Resolution Image Synthesis with Latent Difusion Models.
http://arxiv.org/abs/2112.10752 arXiv:2112.10752 [cs].

[51] Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto, and Percy Liang. 2020.
Distributionally Robust Neural Networks for Group Shifts: On the Importance of
Regularization for Worst-Case Generalization. http://arxiv.org/abs/1911.08731
arXiv:1911.08731 [cs, stat].

[52] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jefrey Heer.
2017. Vega-Lite: A Grammar of Interactive Graphics. IEEE Transactions on
Visualization and Computer Graphics 23, 1 (2017), 341–350. https://doi.org/10.
1109/TVCG.2016.2599030

[53] Julia Stoyanovich and Bill Howe. 2019. Nutritional Labels for Data and Models.
IEEE Data Eng. Bull. 42 (2019), 13–23.

[54] Hariharan Subramonyam, Colleen Seifert, and Eytan Adar. 2021. Towards A
Process Model for Co-Creating AI Experiences. In DIS 2021 - Proceedings of the
2021 ACM Designing Interactive Systems Conference: Nowhere and Everywhere.
Association for Computing Machinery, Inc, 1529–1543. https://doi.org/10.1145/
3461778.3462012

[55] Joost J.M. van Griethuysen, Andriy Fedorov, Chintan Parmar, Ahmed Hosny,
Nicole Aucoin, Vivek Narayan, Regina G.H. Beets-Tan, Jean-Christophe Fillion-
Robin, Steve Pieper, and Hugo J.W.L. Aerts. 2017. Computational Radiomics
System to Decode the Radiographic Phenotype. Cancer Research 77, 21 (Nov.
2017), e104–e107. https://doi.org/10.1158/0008-5472.CAN-17-0339

[56] Zijie J. Wang, Evan Montoya, David Munechika, Haoyang Yang, Benjamin
Hoover, and Duen Horng Chau. 2022. DifusionDB: A Large-scale Prompt Gallery
Dataset for Text-to-Image Generative Models. http://arxiv.org/abs/2210.14896
arXiv:2210.14896 [cs].

[57] James Wexler, Mahima Pushkarna, Tolga Bolukbasi, Martin Wattenberg, Fernanda
Viegas, and Jimbo Wilson. 2019. The What-If Tool: Interactive Probing of Machine
Learning Models. IEEE Transactions on Visualization and Computer Graphics
(2019), 1–1. https://doi.org/10.1109/TVCG.2019.2934619

[58] Benjamin Wilson, Judy Hofman, and Jamie Morgenstern. 2019. Predictive In-
equity in Object Detection. http://arxiv.org/abs/1902.11097 arXiv:1902.11097
[cs, stat].

[59] Tongshuang Wu, Marco Tulio Ribeiro, Jefrey Heer, and Daniel Weld. 2019.
{E}rrudite: Scalable, Reproducible, and Testable Error Analysis. Proceedings of the
57th Conference of the Association for Computational Linguistics (2019), 747–763.
https://www.aclweb.org/anthology/P19-1073

[60] Chenyang Yang, Rachel Brower-Sinning, Grace A. Lewis, Christian Kästner,
and Tongshuang Wu. 2022. Capabilities for Better ML Engineering. http:
//arxiv.org/abs/2211.06409 arXiv:2211.06409 [cs].

https://doi.org/10.1145/2939502.2939503
https://doi.org/10.1148/radiol.2251011667
https://doi.org/10.1148/radiol.2251011667
https://doi.org/10.1007/978-3-319-10602-1_48
http://arxiv.org/abs/2107.09044
https://doi.org/10.1145/3302505.3310068
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1145/3287560.3287596
https://doi.org/10.1145/3287560.3287596
https://doi.org/10.1016/j.patcog.2011.06.019
https://doi.org/10.1016/j.patcog.2011.06.019
https://doi.org/10.1145/3290605.3300924
http://arxiv.org/abs/1712.05889
http://arxiv.org/abs/2110.10234
http://arxiv.org/abs/2110.10234
https://www.ntsb.gov/news/events/Pages/2019-HWY18MH010-BMG.aspx
https://www.ntsb.gov/news/events/Pages/2019-HWY18MH010-BMG.aspx
https://doi.org/10.18653/v1/D19-1018
https://doi.org/10.1145/3368555.3384468
https://doi.org/10.1145/3368555.3384468
https://doi.org/10.1109/REW56159.2022.00039
https://pair-code.github.io/facets/
https://pair-code.github.io/facets/
https://doi.org/10.1038/s41586-019-1138-y
https://doi.org/10.18653/v1/2022.acl-long.230
https://doi.org/10.18653/v1/2022.acl-long.230
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2020.acl-main.442
http://arxiv.org/abs/2112.10752
http://arxiv.org/abs/1911.08731
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1145/3461778.3462012
https://doi.org/10.1145/3461778.3462012
https://doi.org/10.1158/0008-5472.CAN-17-0339
http://arxiv.org/abs/2210.14896
https://doi.org/10.1109/TVCG.2019.2934619
http://arxiv.org/abs/1902.11097
https://www.aclweb.org/anthology/P19-1073
http://arxiv.org/abs/2211.06409
http://arxiv.org/abs/2211.06409

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Behavioral Evaluation of Machine Learning
	2.2 Model Evaluation Approaches
	2.3 Collaboration and Reporting

	3 Formative Interviews with machine learning practitioners
	3.1 Aggregate Metrics Do Not Reflect Model Performance in Deployment
	3.2 Challenges in Tracking Continuous Model and Data Updates
	3.3 Limited Collaboration in Cross-Functional Teams

	4 Design Goals
	5 Zeno: An Interactive Evaluation Framework
	5.1 Python API: Extensible Model Analysis
	5.2 Exploration UI: Create and Track Slices
	5.3 Analysis UI: Track and Test Slices Across Models

	6 Case Studies
	6.1 Case 1: UI Classification
	6.2 Case 2: Breast Cancer Detection
	6.3 Case 3: Voice Commands
	6.4 Case 4: Text-to-Image Generation

	7 Discussion
	8 Limitations and Future Work
	9 Conclusion
	Acknowledgments
	References

